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Preface

The early chapters of this book are based on many years of teaching the material
to my final year honours students in computer science and accountancy at Heriot-
Watt University, Edinburgh. My approach has been guided by their response.
The latter material has benefited greatly from my postgraduate student’s, many
of whom contributed to addressing issues of practical, efficient implementation
of derivative models. Although, in those days, the work was largely C++ based
the principles (and problems) of object based deployment remain the same.
In making use of the appropriate built-in Java data structures and the general
development methodology I have relied heavily on my experience over the last
decade in directing technical and operations teams deploying internet and intranet
distributed financial tools for a wide range of financial organisations.

Many applications in finance and investment are readily solved using analytical
methods. The use of analytical techniques such as the calculus cannot be used
directly on a standard computer. The analytical methods require numerical
approximation techniques to be applied, which allow a standard computer to be
programmed. The resultant programs give an approximate solution (approximate
to the solution which would be found by direct use of analytical techniques).
The approximation methods provide solutions that are only ever partially correct
(to a given degree of accuracy).

A number of applications in finance and investment require the use of methods
which involve time-consuming and laborious iterative calculations. The direct
application of analytical techniques would not be of any help, so there is little
option but to use trial and error or ‘best guess’ techniques. In other situations
many of the valuation methods used in financial engineering have no closed-
form solutions and require analytical methods; these need to be approximated
for solution on a standard computing platform.

The issues mentioned above are tackled within this book by providing a series
of fundamental or core classes which will allow the implementation of analytical
techniques. The core classes also provide methods for the solution of problems
involving the tedious repetition or best guess route. There are fundamental
methods available for the provision of ‘better’ approximations. However there
is a point at which the continuous adjustment to an approximation exhibits
diminishing returns. The decision taken here is to include the most widely used
and robust methods which are used as the basis of a large number of financial
engineering tools.
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Xiv Preface

Statistical methods are widely used in investment and finance applications.
Many statistical methods rely heavily on analytical techniques to solve problems,
thus for computer implementation of these statistical methods one needs to make
use of numerical methods to approximate the analytical components. The java
classes developed in this book will provide a series of statistical methods which
allow the direct application of the statistical techniques. The statistical classes,
in some cases will make use of underlying core classes to provide the needed
numerical methods. Other statistical classes will not inherit any of the core
classes but will themselves be the fundamental class.

Application classes are the end product of the building process. An application
class implements a solution to a given problem in financial engineering or finance
and investment. The application classes embody the techniques that are used
throughout financial engineering practice. Those techniques will invariably use
the underlying statistical classes (which in turn may use the methods of core
classes), the core classes or a combination of both.The categorisation of classes
into core(CoreMath), statistical(BaseStats) and application(FinApps) allows the
independent development of a library system which can be added to over time,
without affecting the operation of applications already built.

The methodology employed here is to make the core classes static, where the
function is unchanging in the application or as abstract as possible, where the
function is largely affected by the application context. The core classes are used
(extended or implemented) by calling classes, which become increasingly more
concrete as application classes. The core, statistical and application classes are
organised as packages. CoreMath is the package containing all of the classes
dealing with numerical algorithms, BaseStats contains the statistical classes and
FinApps contains the application classes.

The chapters follow a largely linear progression from an investigation of
fundamental concepts of finance and investment tools through to implementation
of the techniques which underpin a wide range of the option products being used
in Financial Engineering in Chapter [[l There is a brief discussion of number
representation and accuracy which sets the scene for much of the termination
criteria and levels of acceptable accuracy used in algorithm development. The
first two chapters cover the implementation of financial tools and portfolio
management techniques and introduce some Java data structures. ChaptersBland
develop the technical issues in Bond markets and provide Java implementations
of Bond valuation methods. Chapters J and 6] provide an introduction to the
basis of option markets and aspects of practical techniques. Chapters A9 give
the theoretical basis for much of the work shown in later chapters. For those who
are starting in financial engineering, the three chapters will provide the necessary
background to understand the methods and limitations of the standard tools.
For the experienced practitioner, these chapters will guide an understanding of
the Java class implementations that follow. Chapters [[OH/8l provide the models
and implementation of a wide range of Financial Engineering methods. These
chapters are accessible directly by the practitioner who wishes to implement a
specific type of model or specific methods within a model.



Preface XV

The Java classes and methods are designed to be used as modular ‘object-
based’ tools that can be used as-is to implement the many techniques covered.
However it is expected that the imaginative practitioner will want to combine
the many methods to develop their own products; particular to their unique
application context. The class structures developed here will encourage this
approach.



1

Introduction

1.1. Numerical Accuracy & Errors

Since we are largely dealing with numeric approximations or iterative conver-
gence to a desired solution the discussion of accuracy and error are important.

In the decimal system irrational (e.g. +/2) and transcendental (e.g. 77) numbers
cannot have a precise representation, most rational numbers are also not
represented precisely, in decimal notation. Representing % as a decimal can be
approximated by 0.3 or 0.333333333 or some other arbitrarily large represen-
tation. Providing a decimal value for % means representing the division as a
floating point number.

In Java floating point numbers can be stored up to 15 digits in length (as type
double with 64 bits). The Java BigDecimal is capable of storing an arbitrarily
large decimal number with no loss of accuracy. However the transition from
rational to binary representation provides the opportunity for potential loss of
accuracy. Floating point numbers are represented in the form M x R, where the
Mantissa is the integer part and Radix is the base of a particular computer’s
numbering system, this is usually 2, but can be 10 (in calculator processors)
or 16. The exponent e can be up to 38 in type float and 308 in type double. The
Mantissa provides us with the available precision of a number and the exponent
provides the range.

Since representing numbers in floating point arithmetic can have varying
results dependent on the underlying machine architecture and the data type
(single or double precision floating point) it is important to know the target
machine limitations and also use the appropriate number representations in the
executing code.

One of the more common errors encountered with floating point representation
is rounding error. This results from having more digits in a number than can
be accommodated by the system. As an example consider a computer with a
particularly small representation of real numbers. In this machine we can store
four integers in the Mantissa and have a single exponent.

This simple machine has a largest value of 0.9999E9; the next lowest value
is 0.9998E9. The value in decimal of 0.9999E9 is 999900000; the value of
0.9998E9 is 999800000. If we do the subtraction 999900000 — 999800000 =
100000, we see that there is no way of representing 100,000 intermediate values.
So, 999855000 is represented as 999900000, as is 999895000 and so on.
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Rounding errors are machine number related and are an artefact of using
fixed lengths (machine word lengths) of bits to represent an infinite variety of
numbers. Because rounding errors are related to machine architecture, it is useful
to have some knowledge of the target platform.

One of the benefits in programming with Java is that the code is portable
in the sense that it will run on any platform with a JVM. Unfortunately code
written on one machine architecture with a different number representation to
the target machine is not guaranteed. Floating point calculations that have a large
dependency on accuracy should be configurable at run time with knowledge
of the runtime architecture. We will return to the issue of accuracy and error
at points in following chapters as individual algorithms introduce their own
particular representational characteristics.

1.2. Core Math’s Classes

All of the Core classes are contained within the package CoreMath. This package
covers functions, interpolation & extrapolation, roots of functions, series, linear
algebra, Wiener, Brownian and Ito processes. The Java code for each of these
classes is given in Appendix 1.

Core classes are designed as static or abstract classes, which in many cases
require extending in other implementing classes (usually application classes).
Some of the core classes are designed as standard Java classes, where it can
be reasonably expected that the interface will be modified in the application
context. The examples used throughout the text are working and tested ‘off the
shelf’ Java code but are not developed as user ready applications. The intention
is to show and explain Java methods that will run and perform a given function
without adding the overhead of error trapping and exception handling.

We will often make use of core classes that provide roots (or zeros) of
functions. The general methodology adopted for the book is best explained with
the aid of an example that deals with providing the roots of a function. Our first
example will be the development of a class that makes use of bracketing and
bisection techniques to converge on a root with a given precision. The class is
called IntervalBisection and is in the package CoreMath.

1.2.1. Root Finding - Interval Bisection

Figure [[L] shows the Interval Bisection technique being applied to the function
y =2 — ¢* Interval bisection solves for a root of the equation by starting with
two outlying values (the end points X, and X,) that bracket the root. This is
shown by arrow (1). The assumption is that the initial range of these end points
contains the root. By evaluating the function at these points f(x,), f(x,) and
checking that the function changes sign we know the root is within the range.
The assumption is also made that the function is continuous at the root and thus
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FIGURE 1.1. Bisection on y =2 — ¢*.

has at least one zero. The method takes the first approximation x, to the root by
halving the initial range. So

1
n=5(X+X) (1.2.1)

The function f(x,) is evaluated; there are three possible outcomes. First, in the
interval, [x,, xy]. f(x,)f(x,) <0. Means there is at least one root between these
endpoints. Second, f(x,)f(x,) =0 (we assume that f(x,) # 0). This indicates
that we have found the root f(x,). Third, f(x,)f(x) > 0. This means the root
is in the other interval half, [x,, x,;]. Given that the second outcome is not
initially achieved we continue with the process of halving the uncertainty until
a root is found within the desired precision. From Figure [[T] we see that the
initial range, shown by arrow (1) is halved at x = 0.5. The function evaluates
to 0.351, the function evaluates to —0.7183 at x = 1.0. The root therefore lies
within the range shown by arrow (2). The halved value is at x = 0.75. The
function evaluates to —0.117. The root therefore lies within the range now in the
direction shown by arrow (3). The halved value is evaluated to be 0.131. The
range is now in the direction shown by arrow (4) This process is continued until
the desired precision is reached. The data in Table [LT] shows the convergence
for the function of Figure [[1]

Listing [[T] shows the method evaluateRoot in the abstract class Inter-
valBisection. The abstract method ComputeFunction is implemented in the
extending class. The method evaluateRoot provides functionality for the bisection
algorithm. This is outlined below in Listing [ 1]
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TaBLE 1.1. Interval Bisection on y =2 — ¢*

X, higher,_, —lower lower, higher,

0.500000000000 1.000000000000 0.500000000000 1.000000000000
0.750000000000 0.500000000000 0.500000000000 0.750000000000
0.625000000000 0.250000000000 0.625000000000 0.750000000000
0.687500000000 0.125000000000 0.687500000000 0.750000000000
0.718750000000 0.062500000000 0.687500000000 0.718750000000
0.703125000000 0.031250000000 0.687500000000 0.703125000000
0.695312500000 0.015625000000 0.687500000000 0.695312500000
0.691406250000 0.007812500000 0.691406250000 0.695312500000
0.693359375000 0.003906250000 0.691406250000 0.693359375000
0.692382812500 0.001953125000 0.692382812500 0.693359375000
0.692871093750 0.000976562500 0.692871093750 0.693359375000
0.693115234375 0.000488281250 0.693115234375 0.693359375000
0.693237304688 0.000244140625 0.693115234375 0.693237304688
0.693176269531 0.000122070312 0.693115234375 0.693176269531
0.693145751953 0.000061035156 0.693145751953 0.693176269531
0.693161010742 0.000030517578 0.693145751953 0.693161010742
0.693153381348 0.000015258789 0.693145751953 0.693153381348
0.693149566650 0.000007629395 0.693145751953 0.693149566650
0.693147659302 0.000003814697 0.693145751953 0.693147659302
0.693146705627 0.000001907349 0.693146705627 0.693147659302

public double evaluateRoot (double lower, double higher)

{

//lower and higher are the initial estimates//

double fa; //fa and fb are the initial ‘guess’ values.//
double fb;
double fc; //fc is the function evaluation , f(x)//

double midvalue=0;

double precvalue=0;

fa=computeFunction(lower); //ComputeFunction is implemented
//by the caller//

fb=computeFunction(higher);

//Check to see if we have the root within the range bounds//
if (fa*fb>0)
{ //1f fa*fb>0 then both are either positive//
//or negative and don’t bracket zero.//
midvalue=0;//Terminate program//

else
do

precvalue=midvalue;//preceding value for testing
//relative precision//
midvalue=lower+0.5* (higher-lower);
fc=computeFunction(midvalue) //Computes the f(x)//
//for the mid value//
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if (fa*fc<0)
{
higher=midvalue;

¥

else
if (fa*fc>0)
{

lower=midvalue;

}
} while( (abs(fc)>precisionvalue&i<iterations));
//loops until desired number of iterations or precision is reached//
return midvalue;

}

LisTING 1.1. Method evaluateRoot from class IntervalBisection in package CoreMath

The return value, midvalue in this case is output when the converging solution is
< 0.001. Note we might have used different precision criteria that would rely on
the relative change in precision from one evaluation to the other. For example
using the loop: while((abs(midvalue-precvalue)>precisionvalue&i<iterations));
would terminate when successive values of the intermediate evaluations
are < 0.001.

Table [[T] shows the output from IntervalBisection when evaluating the
equation y =2 —e*.

Column one shows the approximation output from the computation. Column
two shows previous higher estimate minus the previous lower estimate. Columns
three and four show the high and low estimates. For our example the initial
‘guesses’ were higher = 1.0 and lower = 0.5.

The approximation after 19 iterations reaches the desired precision to 1E-06,
which is accurate to the ‘real’ solution by around -1E-07.

Listing [L2] shows the complete class for IntervalBisection. ComputeFunction
is an abstract method which has to be implemented in the calling class (which
provides the actual function, in our example this is y = 2 — ¢*). The constructor
defaults to 20 iterations of the algorithm and the precision is set to le-3. The
using class can pass other values through the alternate constructor (int iterations,
double precisionvalue). Access to the internal values is via the get methods.

public abstract class IntervalBisection

{

//computeFunction is implemented to evaluate successive root estimates//
public abstract double computeFunction(double rootvalue);
protected double precisionvalue;
protected int iterations;
protected double lowerBound;
protected double upperBound;

//default constructor//
protected IntervalBisection()

{

iterations=20;
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precisionvalue= le-3;
}
//Constructor with user defined repetitions and precision//
protected IntervalBisection(int iterations, double precisionvalue)
{
this.iterations=iterations;
this.precisionvalue=precisionvalue;

}
public int getiterations()
{
return iterations;
}
public double getprecisionvalue()
{
return precisionvalue;
}

public double evaluateRoot (double lower, double higher)
{

double fa;

double fb;

double fc;

double midvalue=0;

double precvalue=0;

fa=computeFunction(lower);

fb=computeFunction(higher);

//Check to see if we have the root within the range bounds//

if (fa*fb>0)

{

midvalue=0;//Terminate program//

}

else

do

{
precvalue=midvalue;//preceding value for testing//

//relative precision//

midvalue=lower+0.5* (higher-lower);
fc=computeFunction(midvalue);

if (fa*fc<0)
{
higher=midvalue;
}
else
if (fa*fc>0)
{
lower=midvalue;
}
}

while ((abs(fc)>precisionvalue<iterations));
//loops until desired number of iterations or precision is reached//
return midvalue;
}
}

LisTING 1.2. IntervalBisection in package CoreMath
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A class such as IntervalBisection has its core functionality controlled by the
using class. To compute the function y =2 — ¢* we had to use an application
class which extended the abstract method ComputeFunction. The using class
provided the controlling logic to provide the equation into IntervalBisection.
The abstract class is there to provide a core technique (interval bisection) and not
to perform other functionality. The strategy of keeping core functionality within
static or abstract classes allows us to re-use the class in a variety of applications
without the need to re-design or add to the core.

In this example we have used the class IntervalBisection to implement interval
bisection on the function y =2 — ¢*. Later we will use this same class to
implement interval bisection on a yield equation. It will perform exactly the
same functionality on a completely different equation; the controlling class (an
application class) will implement the abstract method computeFunction with the
various input equations.

We will see later that more than one class is often required before we can
implement an application. The interval bisection algorithm although generally
robust is slower to converge than other root finding algorithms. The Newton
Raphson algorithm (abbreviated to Newton’s method) is a method for a root
finding algorithm which converges to a root much more quickly than interval
bisection. Although the Newton method is quicker to converge, it requires the
derivative of the function to be used in the solution. This is a good example of
a series of classes being used to implement an application.

1.2.2. Newton’s Method

To use Newton’s method we will need to use the class Derivative from the
CoreMath package. This abstract class provides the method derivation to provide
functionality for providing the derivative of a single function. The class has
its abstract method deriveFunction extended by the using class which provides
the controlling logic to provide the single functions for evaluation. Listing [[3]
provides the complete abstract class for Derivative.

The method derivation uses the technique of difference quotients to arrive at
an approximation of a function. The method being implemented is based on the
general definition of the derivative.

w (1.2.2)

f/() = lim

The implementation used is based on the approximation which gives best
accuracy with lower computational cost:

fox+h) — fx—h)

r =

(1.2.3)

The method which implements algorithm 1.1.3 is given below in Listing [3l
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public double derivation (double InputFunc)

{
double value;
double X2=deriveFunction(InputFunc-h);
double X1=deriveFunction(InputFunc+h);
value=((X1-X2)/(2*h));
return value; }

LisTING 1.3. Method derivation in class Derivative package CoreMath

X1 and X2 take the value from the abstract method deriveFunction and
implement the arithmetic from equation 1.1.3. The value of h is chosen to provide
optimum accuracy. The smaller we can make h, the greater the accuracy we
achieve (from theory). The analytic answer to the derivative of e* for x =1, is e
itself. Column three in Table shows the error in the derived approximation
from the actual value of e. Column four shows the ratio of previous to present

TABLE 1.2. Output from derivation for InputFunc = e*

1 f s=e—f(x) Ratio(e, ,/¢,)
0.5 2.8329678 —0.114685971

0.25 2.746685882 —0.028404053 4.03766
0.125 2.72536622 —0.007084391 4.00939
0.0625 2.720051889 —0.00177006 4.00234
0.03125 2.718724279 —4.42E-04 4.00059
0.015625 2.718392437 —1.11E-04 4.00015
0.0078125 2.71830948 —2.77E-05 4.00004
0.00390625 2.718288741 —6.91E-06 4.00001
0.001953125 2.718283557 —1.73E-06 4
9.77E-04 2.718282261 —4.32E-07 4
4.88E-04 2.718281936 —1.08E-07 4.00001
2.44E-04 2.718281855 —2.70E-08 3.99996
1.22E-04 2.718281835 —6.75E-09 3.99984
6.10E-05 2.71828183 —1.69E-09 3.99719
3.05E-05 2.718281829 —4.19E-10 4.02772
1.53E-05 2.718281829 —9.19E-11 4.56177
7.63E-06 2.718281828 —1.92E-11 4.79628
3.81E-06 2.718281829 —4.83E-11 0.39706
1.91E-06 2.718281828 9.94E-12 —4.85718
9.54E-07 2.718281828 1.26E-10 0.07865
4.77E-07 2.718281828 1.26E-10 1
2.38E-07 2.718281829 —3.39E-10 —0.37238
1.19E-07 2.718281828 5.92E-10 —0.57314
5.96E-08 2.718281828 5.92E-10 1
2.98E-08 2.718281835 —6.86E-09 —0.08632
1.49E-08 2.718281835 —6.86E-09 1
7.45E-09 2.718281835 —6.86E-09 1
3.73E-09 2.718281806 2.29E-08 —0.29893
1.86E-09 2.718281865 —3.67E-08 —0.62584

9.31E-10 2.718281984 —1.56E-07 0.2352
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error. The ratio of improvement is about 4. For each halving of h. This is true
until 1/h is at 4.88E-04, thereafter the improvement oscillates widely.

This illustrates a phenomenon mentioned earlier in the introduction, namely
machine (rather than theoretical) error. The errors being introduced are largely
the result of rounding. The effects of repeated divisions of f(x+h) and f(x-h),
together with machine representation (we are using type double for all floating
calculations) are introducing practical implementation errors. If we used type
float (32 bit) in the calculation things would be worse and we could expect
significant error to be shown at around an h of -6.9E-06. We can achieve accuracy
of -1.92E-11 before things deteriorate. For most applications this is good enough,
but for some it could pose problems. You can use Table [[T] to assess the size
of h that might be suitable for your particular application.

Table [2below shows the output from derivation with input = e*. The values
of h are decreasing from 0.5 down to 9.31E-10. The computed function f’, is
gradually converging on the ‘correct’ (high precision) answer.

Listing [[4] gives the complete abstract class for Derivative.

package CoreMath;
public abstract class Derivative//

{
public abstract double deriveFunction(double fx);
//returns a double...... the function//
public double h;// degree of accuracy in the calculation//
public double derivation(double InputFunc)
{
double value;
double X2=deriveFunction(InputFunc-h);
double X1=deriveFunction(InputFunc+h);
value=((X1-X2)/(2*h));
return value;
}
}

LISTING 1.4. Derivative

Now we know something about the characteristics of our core class Derivative
let’s examine the use of it in Newton’s method.

Newton’s method is based on linear approximations to the function. The
approximation is based on the tangent line to the function curve.

tanf = f'(x,) = MThus, X=Xy — f/(xo) and x, = x, — f,(XI)
(xo—xy) S (x0) f(x))
In general, X, = x, — &% forn=1,2,3...(0.2.4)

To use Newton’s method we only require a single approximation for the root and
the derivative of the function f(x). There can be problems with Newton’s method;
one is where the derivative is zero near the root. In this case; f(x,)/f’(x,) — oo.
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Small values of f'(x,) can cause large differences between iterations and slow
convergence; also the calculation of f’(x,) itself can be complicated.

Package CoreMath contains the class NewtonRaphson. This is an abstract
class which implements the Newton Raphson algorithm and extends the abstract
method deriveFunction.

public void newtraph(double lowerbound)
{
double fx=newtonroot (lowerbound);// y=2—e¢* in our example//
double Fx=derivation(lowerbound) ;
double x=(lowerbound-(fx/Fx)); //;ﬂ*':xn—-ﬂa$//
while((abs(x—lowerbound)>precisionvalue&coﬁnter<:iterate))
{
lowerbound=x;
fx=newtonroot (lowerbound);
Fx=derivation(lowerbound);
x=(lowerbound- (fx/Fx));
counter++;

¥
}

LisTING 1.5. Shows the method newtraph. This implements the algorithm of 1.1.4

The method newtraph takes the approximation as lowerbound. The abstract
method newtonroot is extended in the calling class which provides the function
for evaluation. The method derivation is used to calculate the derivative. The
method iterates through calls until the desired precision or predefined number of
iterations is reached. This is controlled through the while loop which implements:
|41 — x,| > & < Iterations. The precision value ¢ is defined in the method
accuracy as is the value of the desired maximum number of iterations.

Table [[3] shows the output from NewtonRaphson for y =2 — e*.

Column one shows the approximation (guesses) input. The initial approxi-
mation was 1.0. The second column shows the actual (analytical) solution to the
function minus the approximation. The third column shows log base 10 of the
differences. From this column it can be intuitively appreciated that the error in
the successive approximations is halving each time.

It is instructive to compare the number of iterations and the convergence
characteristics shown in Table [Tl for the bisection algorithm and Tables[T3]and

TaBLE 1.3. Newton Raphson method on y =2 —¢*

N X, (actual-x,) log,y(actual-x,)

1 1.000000000000000 —0.3068528194400547 —0.5130698819559578
2 0.735759896178339 —0.04261271561839375 —1.3704607882472601
3 0.6940422724627328 —8.950919027874704E-4 —3.048132371584211
4 0.6931475844952419 —4.039352966556109E-7 —6.3936881956713165
5 0.6931471805598971 4.8183679268731794E-14 —13.317100040678492
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TABLE 1.4. Output from method newtraph

N f(x) £(x) ®)

—0.718281828459  —2.718292257953 0.735759896178
—0.087067344576  —2.087063855072 0.694042272463
—0.001790985234 —2.001798726781 0.693147584495
—0.000000807871  —2.000000165481 0.693147180560

0.000000000000  —2.000000165481 0.693147180560

[ R R S

[[4 below. Clearly Newton’s method converges within four iterations whereas
the bisection method takes 19 iterations for the same degree of precision.

Table [[.4] shows the output from the method newtraph. Column one is the
function evaluation with the ‘guess’ value as input. Column two is the derivative
of the function with the variable set to the ‘guess’ value. Column three shows
the successive approximations for x.

Listing gives the complete class for NewtonRaphson. Since the Newton
Raphson method requires the use of the derivative, this class extends the
abstract class Derivative. It was mentioned earlier that we often use several
classes to provide an application with the needed methods. In this case we
have NewtonRaphson making use of Derivative (and extending the abstract
method). However the class NewtonRaphson is itself only designed to provide
the means for carrying out Newton’s algorithm. To do the computation on an
actual function, NewtonRaphson needs to have its abstract method newtonroot
extended by an application which provides the function to be evaluated. Newton-
Raphson also needs to pass this function to the Derivative method which
requires it.

package CoreMath ;
public abstract class NewtonRaphson extends Derivative
{
public abstract double newtonroot (double rootvalue);
//the requesting function implements the calculation fx//
public double precisionvalue;
public int iterate;
public void accuracy(double precision, int iterations)
//method gets the desired accuracy//
{
super.h=precision;//sets the superclass derivative//
//to the desired precision//
this.precisionvalue=precision;
this.iterate=iterations;
}
public double newtraph(double lowerbound)
{ int counter=0;
double fx=newtonroot (lowerbound);
double Fx=derivation(lowerbound);
double x=(lowerbound-(£fx/Fx));
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while (abs (abs(x)-abs(lowerbound))
> precisionvaluel||counter<iterate)

{
lowerbound=x;
newtraph (lowerbound);//recursive call//
// to newtraph//
counter++;
}
return x;
}
public double deriveFunction(double inputa)
{

double x1l=newtonroot (inputa);
return x1;

}

LisTING 1.6. NewtonRaphson

1.3. Statistical Classes

The statistical classes implement methods for the manipulation and analysis of
data. Statistical classes provide standard re-usable techniques as methods for use
in application classes where the specific functionality of the methods are needed
to create a sophisticated technique (from possibly many methods). The class
structures are minimal in the sense that a particular technique will usually be
applied through the use of a series of classes that implement a particular part of
the technique.

For example, the data in Table [L3] is to be used to provide the standard
deviation for the sample. The standard deviation will not be directly computed,
rather the mean, followed by the variance then standard deviation will be used
to provide the desired result Table [[3] shows data with associated probability.
Table [LA contains data only.

TABLE 1.5. Input dataset

Data Item : 1 Data 12.000000 Probability 0.100000
Data Item : 2 Data 7.000000 Probability 0.200000
Data Item : 3 Data 11.000000 Probability 0.100000
Data Item : 4 Data 23.000000 Probability 0.100000
Data Item : 5 Data 44.000000 Probability 0.075000
Data Item : 6 Data 58.000000 Probability 0.025000
Data Item : 7 Data 22.000000 Probability 0.200000
Data Item : 8 Data 33.000000 Probability 0.100000
Data Item : 9 Data 56.000000 Probability 0.050000
Data Item : 10 Data 76.000000 Probability 0.050000
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TABLE 1.6. Input dataset
equal probability

Data Item : 1 Data 12.000000
Data Item : 2 Data 7.000000

Data Item : 3 Data 11.000000
Data Item : 4 Data 23.000000
Data Item : 5 Data 44.000000
Data Item : 6 Data 58.000000
Data Item : 7 Data 22.000000
Data Item : 8 Data 33.000000
Data Item : 9 Data 56.000000
Data Item :10 Data 76.000000

When we make use of the statistical methods in BaseStats to provide us
with the mean and variance of this data it’s reasonable to expect that we can
use the same methods. This is achieved by making extensive use of method
overloading. The majority of the statistical classes are implemented as static
methods. Statistical classes are placed in the package BaseStats.

1.3.1. Measures of Dispersion

The class DataDispersion in the package BaseStats is a general purpose class
with static methods for direct use. A range of methods that deal with aspects of
data dispersion are supplied to enable an application class to make direct use of
specific techniques, or to combine methods into a more global technique.

The data in Tables [[L3] and [L@l are input from a controlling class which makes
use of the class DataDispersion to evaluate the standard deviation of the data.
The methods used for this operation are shown in Listing [[7]

n
; 1
// uses the algorithm - i; X, //

public static double mean(double[ ] x)
//arithmetic mean for a single list//
{
double total=0.0;
for(int i=0;i<x.length;i++)
total+=x[i];
return total/x.length;
}

n
// uses the algorithm Y (X;P;) //
i=1

public static double mean(double[ ][] x) //returns expected value//
//for variable * probability//

{

double total=0.0;
double probability=0.0;

for(int i=0;i<x.length;i++)//the number of rows//
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{
total+=(x[1][0]1*x[1][1]1);
probability+=x[i][1];
}
if (probability!=1.0)
System.out.println(“WARNING ! The probabilities do not sumto 1.0”);
return total;

}
Y XI-% X
// uses the algorithm =—E=L—  //

public static double variance(double[] v1)
//variance of a single variable with equal likeliehood//

double sumd=0.0;
double total=0.0;

for(int i=0;i<vl.length;i++)

{
total+=vl[i];
sumd+= pow(v1l[i],2);//sum of x sqrd

}

return (sumd-total)/((vl.length)-1);
//true value of convergence as length is large//

n n
// uses Y (X?P)— Y (X;P)* //
i=1 i=1
public static double variance(double[][] V1)

//variance of a variable with different
//probability of otcome//

double sumd=0.0;
double total=0.0;
double totalpow=0.0;
double probability=0.0;
for(int i=0;i<vl.length;i++)
{
total+=(v1[i][0]1*v1[i][1]);//mean or expected value//
totalpow+=(pow(v1[i][0],2)*v1l[i][1]);//E[X2]//
probability+=v1[i][1];
}
if (probability!=1.0)
System.out.println(“WARNING !The probabilities
do not approximate to sumto 1.0");
total=pow(total,2);
return (totalpow-total);
}
public static double standardDeviation(double sl)
// computes standard deviation for variance sl//

double sdev;
return sdev=sqrt(sl);

}

LisTING 1.7. Methods used to provide Standard Deviation
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In each case the controlling class passes the data to the method. The JVM
determines which particular implementation of mean and variance to use. In
the case of Table mean and variance for the single list take the data. For
Table [L.@ data, the methods mean and variance for the double list take the data.

The method standardDeviation takes the variance and produces the measure.

This simple example shows that a combination of overloading methods and
constructing a global technique (or algorithm) from simpler ones, is a very
efficient technique. The output from Tables [L3] and [L.€] are:

Table [[3l : Mean : 25.050000 Variance : 342.297500Standard Deviation :
18.501284

Table Mean : 34.200000 Variance : 547.955556Standard Deviation :
23.408451

Class DataDispersion is used in a later example when we make use of covariance
and standard deviation. The remaining methods to complete the listing for
DataDispersion is shown in Listing

package BaseStats;

import java.util.ArrayList;
import java.io.*;

import static.java.lang.Math.*;
public class DataDispersion

{ n

//% Z] X; for both entries //

public static double[] dumean(double[][] x)//arithmetic mean//
//for a double list//
{
double x1=0.0;
double y=0.0;
double[ ] total=new double[2];
for(int i=0;i<x.length;i++)
{
x1+=x[1][0];
y+=x[i][1];
}
total[0]=x1/x.length;
total[l]=y/x.length;
return total;
}
//use algorithm -1 i X.//
i=1
public static double convmean(double[] x)// for large length//
{
double total=0.0;
for(int i=0;i<x.length;i++)
total+=x[1];
return total/(x.length-1);
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i X,-z— i Xi
// uses the algorithm =—=— for each input //
public static double[] variances(double[][]vl)
//variance of a single variable with equal likeliehood//

//for double inputs//

double[ ] output=new double[2];
double sumd=0.0;
double sumd1=0.0;
double total=0.0;
double totall=0.0;
for(int i=0;i<vl.length;i++)

{
total+=v1[i][0];
totall+=v1[i][1l];
sumd+= pow(v1[1][0],2);//sumof x sqrd
sumdl+= pow(v1l[i][1],2);//sumof x sqrd
}

total=(pow(total,2)/vl.length);//sumof [x]sqrd/n
totall=(pow(totall,2)/vl.length);//sumof [x]sqrd/n

output[0]=((sumd-total)/((vl.length)-1));
output[1l]=((sumdl-totall)/((vl.length)-1));
return output;

}
£ (%) (1-1:)

//uses algorithm El—rnw——//

public static double covar(double[ ][] outcomes)
//equally likely outcomes//

{

double sa=0.0;

double sb=0.0;

double product=0.0;

int size=outcomes.length;

for(int i=0;i<size;i++)

{
sa+=outcomes[1][0];//x values or proprtions//
sb+=outcomes[i][1];//y values or proportions//
}
double samn=sa/size;//expected value of x//
double sbmn=sb/size;//expected value of y//
for(int i=0;i<size;i++)
{

product+=( (outcomes[i][0]-samn) *
(outcomes[i][l]-sbmn));
//sum of the products ofdeviations//
}
return product/size;//covariance//
}

//use algorithm Zn: (Xl. — )_() (yl. _ )7)* P //
i=1

public static double covar2(double[ ][] outcomexyp)
//inputs of non equal joint outcomes//
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// data in the form A value, B value . Probability(P)

// of B and A the same//

double productx=0.0;

double producty=0.0;

int size=outcomexyp.length;

double covariance=0.0;

for(int i=0;i<size;it++)

{
// A[n][0]1,B[n][1],P[n][2]ccccccccncs //
productx+= outcomexyp[i][0]*outcomexyp[i]l[2];//

probability * observed value//

producty+=outcomexyp[i][1l]*outcomexyp[i][2];

}

for(int j=0;j<size;j++)

{
double xdevs=outcomexyp[j][0]-productx;
double ydevs=outcomexyp[j][1l]-producty;
double devproduct=xdevs*ydevs;
double covprobs=devproduct*outcomexyp[j1[2];
covariance+=covprobs;
}
return covariance;
}
I py=gk 1/
public static double correlation(double cov,double sdl,double sd2)
{
double cor=cov/sdl*sd2;
return cor;
}

}

LisTING 1.8. Class DataDispersion

1.4. Application Classes

The application classes comprise those classes which provide the functionality
for solving application problems in Financial Engineering computation. Appli-
cation class methods provide the controlling logic for calling other classes from
the CoreMath and BaseStats packages. The majority of application classes are
self contained within the package FinApps, a limited number of the classes
involve combinations of methods from others within FinApps. Application classes
comprise the focus of this book. An application class which makes use of the
root finding algorithms discussed earlier is the Yield evaluator and another which
makes use of a range of methods from the CoreMath and BaseStats packages
is the Portfolio evaluator. See Elton & Gruber (1995) for background theory.
Yield evaluation can be accomplished with a range of numerical methods. For
our examples we will use the bisection algorithm implemented in IntervalBi-
section and the Newton Raphson algorithm implemented in the NewtonRaphson
class. This example gives us the opportunity to see how the concrete classes
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that make up the application set make use of increasingly abstract classes. When
using application classes the emphasis is on the use of controlling structures to
access and manipulate data and choosing the appropriate methods to solve an
application problem.

We can use application classes to implement business logic without having
any real concern about the implementation lower down the scale. The solution
of an internal rate of return problem can be accomplished by using one of the
yield classes that have been developed for this book. That yield class might use
the bisection algorithm or could make use of the Newton Raphson algorithm,
which in turn makes use of the derivative algorithms etc. If the main imperative
is to design an application that solves a problem in finance, that application can
be solved using the classes as is. Alternatively if the application requires a new
construct, the application package can be added to by developing a class which
uses say, some methods from BaseStats and some from CoreMath in a novel
way. This is the essence of the approach taken throughout the rest of this book.

The application classes provide the controlling logic and implement business
rules to solve problems in finance and investment domains. The core math and
base statistics classes are concerned with providing solutions which are numerical
methods and statistical methods per se. We will now examine our example class
for Yield evaluation. Yield calculations are core to valuing bonds. See Martelleni
et al (2003).

This application class is designed to solve for the internal rate of return (IRR).
The equation of value for IRR connects the amounts paid into an investment with
the amounts going out of that investment. The specific class we will examine
takes the discounting to the present time.

1.4.1. Internal Rate of Return
The specific formula is:

Coy 100

> + N (1.4.1)
Mp is the market price, C the coupon rate, as, is the present value of a series of
payments for n periods paid twice per n.

This specific equation is used to find the market price, given the yield, based
on the simplifying assumption that settlement occurs on an interest paying date.
Alternatively, to find the yield given the published price involves the use of one
of the root finding algorithms.

MP =

Co 100
Thus, 0 = —MP + —Z 4 ——
s T T arg

(14.2)

1.4.2. Deriving yield approximations — Bisection method

We will initially use IntervalBisection from package CoreMath to compute the
function derived from 1.1.6. The application class is therefore called YieldBisect.
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TABLE 1.7. Interval Bisection on: f(x) =2 [1 - (1+Ii)2“ } + % —104.5 (0.4.3)

N Higher X Lower [f(x)|

1 0.0500000000 0.0500000000 0.0300000000 4.5000000000
2 0.0500000000 0.0400000000 0.0400000000 0.7421368567
3 0.0450000000 0.0450000000 0.0400000000 1.9210637586
4 0.0425000000 0.0425000000 0.0400000000 0.6001950030
5 0.0425000000 0.0412500000 0.0412500000 0.0682627610
6 0.0418750000 0.0418750000 0.0412500000 0.2666399816
7 0.0415625000 0.0415625000 0.0412500000 0.0993574717
8 0.0414062500 0.0414062500 0.0412500000 0.0155896204
9 0.0414062500 0.0413281250 0.0413281250 0.0263259979
10 0.0414062500 0.0413671875 0.0413671875 0.0053655464
11 0.0413867187 0.0413867187 0.0413671875 0.0051126975
12 0.0413867187 0.0413769531 0.0413769531 0.0001262593
13 0.0413818359 0.0413818359 0.0413769531 0.0024932603
13 0.0413793945 0.0413793945 0.0413769531 0.0011835108
15 0.0413781738 0.0413781738 0.0413769531 0.0005286283
16 0.0413775635 0.0413775635 0.0413769531 0.0002011851

Within YieldBisect the method computeFunction provides the functionality to
implement equation 1.1.6. computeFunction is listed below in Listing The
complete class is shown in Listing The run-time code for the example is
appended.

public double computeFunction(double rootinput)
//implements the abstract method from interval bisection
{
double poscashflow,solution;
poscashflow=rateperTerm;//cashflow out per term//
//as monthly amount * termperiod//
solution=(poscashflow/rootinput*
(1.0-1.0/(pow(1l.0+rootinput,rateindex))))
+(nominalstockprice/ (pow(1l.0+rootinput, rateindex)))
-marketpricevalue;
return solution;

}

LisTING 1.9. Method computeFunction in class YieldBisect

Table [[7] shows the output for the data of Equation 1.1.7. This represents
the yield on an investment with the following characteristics: Nominal Price
100.0. Market Price 104.5. Interest Paid at 5 every six months (twice yearly).
Term to redemption 3 years(n)Coupon rate 10% Per annum. The initial estimates
for yield are Low =3%. High =7%.

The solution is 4.1377%. This takes 15 iterations to complete with an accuracy
of le-6.



20 1. Introduction

package FinApps;

import java.text.*;

import java.lang.*;

import static.java.lang.Math.*;
import CoreMath.IntervalBisection;

public class YieldBisect extends IntervalBisection {

public YieldBisect() //default constructor//

{

}

public YieldBisect(int Nofiterations, double Precision,

double high, double low) {
super (Nofiterations,Precision);

//alternate constructor with changed values for precision
// and number of iterations Interval Bisection//

inputevaluelow=1low;
inputvaluehigh=high;
}

protected double nominalstockprice;
protected double termperiod;
protected double couponrate;
protected double marketpricevalue;
protected double inputevaluelow;
protected double inputvaluehigh;
protected double rateperTerm;
protected double maturityperiod;
protected double rateindex;

public double computeFunction(double rootinput)
//implements the abstract method from interval bisection

double poscashflow,solution;
poscashflow=rateperTerm;//cashflow out per term
//as monthly amount * termperiod//
solution=(poscashflow/rootinput*(1l.0-
1.0/ (pow(l.0+rootinput,rateindex))))+(nominalstockprice/
(pow(1l.0+rootinput, rateindex)))-marketpricevalue;
return solution;

}

public double yieLd(double noms, double term, double coupon,
double mktp, double period) {
nominalstockprice=noms;
termperiod=term;
couponrate=coupon;
marketpricevalue=mktp;
rateperTerm=( (coupon/term));
maturityperiod=period;
rateindex=(maturityperiod*term);
return evaluateRoot (inputevaluelow, inputvaluehigh);
//evaluateRoot is in the class: CoreMath IntervalBisection
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public static void main(String[] args) {

YieldBisect CalcBond= new YieldBisect(20,1e-6,0.07,0.03);
double yieldvalue=CalcBond.yieLd(100.0,2.0,10.0,104.5,3.0);
System.out.println("The required yield is =="+yieldvalue);

}

LisTING 1.10. Class YieldBisect

1.4.3. Deriving Yield Approximations
-the Newton Raphson Method

Consider now that our class Yield evaluator is to be implanted with the Newton
Raphson method. This time our application class is called NewtonYield. It
implements the same equation as before. The results are shown in Table [LL8]

Initial estimate for yield is 5%.

This has achieved the desired solution in three iterations. Compare this with
the number of iterations required for the interval bisection technique.

The application class NewtonYield shares a significant amount of code

with YieldBisect. The difference is in the implementation of the abstract
method newtonroot from NewtonRaphson, rather than the implementation of
the abstract method computeFunction from IntervalBisection. Also the class
extends NewtonRaphson in the header . The listing for NewtonYield is shown
in Listing [LTT}
We have examined how different configurations of Yield have been implemented
through application classes. The two examples have used methods from another
package (CoreMath). We will now look at two application classes that make
use of two packages (CoreMath and BaseStats) and also use methods from the
FinApps package.

The two examples we will examine are the classes Portfolio and SelectPort-
folio in the package FinApps.

1.4.4. Portfolio Management

Class SelectPortfolio is concerned with supplying methods to handle the diverse
type of input data that can be used to perform portfolio analysis. For our examples

TABLE 1.8. Newton’s method on f(x) = % {1 - W} + % —104.5

N Estimate(x) fix) f(x) Estimate(x+1)
1 0.0500000000 —4.5000000000 —507.5692067322 0.0411342139
2 0.0411342139 0.1304545467 —537.3274875922 0.0413769980

3 0.0413769980 0.0001021894 —536.4859306667 0.0413771885
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we are using methods to handle raw data and methods to handle pre-processed
data based on expected returns and expected end price. The size of SelectPortfolio
is obviously arbitrary and will vary dependant on the variety of data formats that
require handling; the more types required can simply be added. When dealing
with large datasets from external sources, we will need to make use of Java
file handling and data stream handling. Constructing a general purpose data
handler can therefore be a fairly large job. Methods dealing specifically with
streaming and file management for use in SelectPortfolio are fortunately provided
by Java.

package FinApps;

import CoreMath.NewtonRaphson;
import BaseStats.inputmod;
import static.java.lang.Math.*;

public class NewtonYield extends NewtonRaphson

{

public NewtonYield(double initialval, double precision,
int iterations ) {

inputvalue=initialval;
iteration=iterations;
prec=precision;

}

protected double nominalstockprice;

protected double termperiod;

protected double couponrate;

protected double marketpricevalue;

protected double inputvalue;

protected double rateperTerm;

protected double maturityperiod;

protected double rateindex;

int iteration;

double prec;

public double newtonroot (double rootinput)
//implements the abstract method from interval bisection

double poscashflow,solution;
poscashflow=rateperTerm;//cashflow out per term as monthly
//amount * termperiod//
solution=(poscashflow/rootinput*(1l.0-
1.0/ (pow(1l.0+rootinput,rateindex))))+(nominalstockprice/
(pow(1l.0+rootinput, rateindex)))-marketpricevalue;
return solution;

public double yielLd(double noms, double term, double coupon,
double mktp, double period) {

nominalstockprice=noms;

termperiod=term;

couponrate=coupon;

marketpricevalue=mktp;
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rateperTerm=( (coupon/term));
maturityperiod=period;
rateindex=(maturityperiod*term);
accuracy (prec,iteration);
return newtraph(inputvalue);

public static void main(String[] args)

{

NewtonYield CalcBond= new NewtonYield(0.05,1e-6,20);
System.out.println(“RESULT "+CalcBond.yieLd(100.0,2.0,
11.0,108.120,3.0));

}

LisTING 1.11. Class NewtonYield

We will use a ‘console’ based approach to handling input/output for the setting
up of data handling parameters. A console application is largely independent
of the java version being used. We would normally expect to use a graphical
interface to provide user choice, but the interfaces to the various components are
JVM sensitive.

The Markowitz approach to investment appraisal is based on the end of period
value of an asset or portfolio of assets. Emphasis is thus on the expected returns
and deviation (as a measure of risk) of a portfolio. The data in Table [[L9 shows
the pre-processed data for ten securities. This data is input to SelectPortfolio
(shown in Listing [[LT2) and used to provide the expected return for the portfolio
of these assets. The output from the class Portfolio is shown in Table [LT0

SelectPortfolio uses data handling techniques (case switch) to categorise the
input type and organise appropriate data structures (ArrayList). Based on the
input style selection, the appropriate method from class Portfolio is used to
implement the algorithm for calculating the expected return for a portfolio.

TABLE 1.9. Input data for SelectPortfolio

Asset No Shares Initial Price Expected Return %
A 100 40 16.2
B 200 35 24.6
C 100 62 22.8
D 150 30 21.3
E 100 31 22.1
F 300 17 16.6
G 180 22 15.0
H 200 10 13.7
I 120 40 12.5
J 100 54 11.3
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TABLE 1.10. Output from method retlnitprice in class Portfolio

Expected return for a portfolio:

A investment per share 4000.0 proportion 0.08684324793747286
B investment per share 7000.0 proportion 0.1519756838905775

C investment per share 6200.0 proportion 0.13460703430308293
D investment per share 4500.0 proportion 0.09769865392965697
E investment per share 3100.0 proportion 0.06730351715154147
F investment per share 5100.0 proportion 0.1107251411202779

G investment per share 3960.0 proportion 0.08597481545809814
H investment per share 2000.0 proportion 0.04342162396873643
I investment per share 4800.0 proportion 0.10421189752496743
J investment per share 5400.0 proportion 0.11723838471558837

Starting valuation: 46060.0
Expected portfolio return 18.132870169344333

ArrayList, which is available from Java 1.2 and above, can store heterogeneous
data as a single list structure. This is a powerful structure which will dynamically
grow to accommodate the input. The ArrayList class is a utility in the Java.util
package. The ArrayList object stores other objects not primitive data types. We
will see in later chapters how this datatype can be fully exploited in dealing with
large data volumes from external sources.

In this first example we will look at the general structure being used to
implement the basic algorithms. This simple example uses the same broad
methodology that more complicated algorithms will use. Much of the code is
supporting the data manipulation required for data sets of unknown size and
content mix. We are using case selection ‘“2” where the input is the pre processed
data of Table SelectPortfolio uses the flexibility of the ArrayList datatype
to store input data. The supporting code is used to do basic housekeeping on the
data array. The case switch calls the methods folioreturns and retlnitprice from
the class Portfolio. The remaining case switches can select different input data
styles and choose the appropriate processing methods from the Portfolio class.

package FinApps;
import BaseStats.inputmod;
import static.java.lang.Math.*

public class SelectPortfolio extends Portfolio

{

public static void main(String[] args)
{

int vals=0;

double data=0.0;

int numshares=0;

int numshare=0;

double price=0.0;

double initialvalue=0.0;
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double expectret=0.0;

double endprice=0.0;

String name=" ";

SelectPortfolio port=new SelectPortfolio();

System.out.println("CHOOSE TYPE of DATA INPUT");
System.out.print ("ENTER 1 For Raw Data(monthly %): 2 For
% Expected Returns: 3 For
Expected End Price:");
int inputtype=inputmod.readInt();
switch(inputtype)
{
case 1: System.out.println("Enter the NUMBER of
securities to be processed");
int numelements=inputmod.readInt();
port.insertnumsec (numelements);
System.out.println("Enter the NUMBER of monthly returns to
be processed for all ”);
vals=inputmod.readInt();
port.datasize(vals);
for (int i=0;i<numelements; i++)
{
System.out.println("Enter the NAME of the securiy to
be processed");
name=inputmod.readString();
port.insertstring(name);
//adds new securities to the list//
port.offsetsize(l);//default value.. can accommodate a//
//series of other non-data headers//

for(int j=0;j<vals;j++)

{

System.out.println("Enter the EXPECTED Monthly % Return
for the security "+name);

data=inputmod.readDouble();

port.insertdata(data);//adds data to the list//

}

port.propanalysis();
break;

case 2: System.out.println("Enter the number of securities
to be processed");
int nums=inputmod.readInt();
for (int i=0;i<nums; i++)
{
System.out.println("Enter the NAME of securiy
to be processed");
name=inputmod.readString();
System.out.println("Enter the NUMBER of issues purchased
for "+name);
numshares=inputmod.readInt();
System.out.print("Enter the INITIAL PRICE of securities
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for "+name);
initialvalue=inputmod.readDouble();
System.out.println("Enter the EXPECTED % RETURN
for the security "+name);
expectret=inputmod.readDouble();
port.folioreturns (name,numshares,initialvalue,
expectret);//Adds data to the list//

port.retInitprice();
break;
case 3: System.out.println("Enter the NUMBER of
securities to be processed");
int numelem=inputmod.readInt();
for (int i=0;i<numelem; i++)

System.out.println("Enter the NAME of securiy to be
processed");
name=inputmod.readString();
System.out.println("Enter the NUMBER of issues purchased for
"+name) ;
numshare=inputmod.readInt();
System.out.print("Enter the INITIAL PRICE of securities for
"+name) ;
initialvalue=inputmod.readDouble();
System.out.print("Enter the EXPECTED END PRICE
of securities for "+name);
endprice=inputmod.readDouble();
port.folioendvals(name,numshare,initialvalue,
endprice);
//Adds data to the list//

port.retendvals();

break;
default: System.out.println("Enter the type of

LisTING 1.12. Class SelectPortfolio

Examining ‘case 2’, in Listing The input loop is set by the number of
securities to be processed. The variables name, numshares, initialvalue and
expectret are passed to the method port.folioreturns (method in class Portfolio).
Since we are using the ArrayList to store data the method folioreturns manipu-
lates the data into Object wrappers. Listing [[L13] shows the method folioreturns.
The method adds primitive data from SelectPortfolio to the ArrayList structure
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by wrapping each primitive datatype in its Object wrapper. The wrapper classes
are in the package Java. Lang.

public void folioreturns(String sname, int numshares,
double initialprice,double

expectedrets)// for

expected end period share price//

{
ArrayList folioentry=getFolio();
folioentry.add(sname);//0 entry....index number//
folioentry.add(new Integer (numshares)); // WRAPPERS //
folioentry.add(new Double(initialprice));
folioentry.add(new Double (expectedrets));//3 entry//
}

LisTING 1.13. Method folioreturns from class Portfolio

Class Portfolio implements the following equation in the method retInitprice:
The method is shown in Listing [[.14]

R, =3" X,R, (0.4.4), where the R, = the expected return for the
portfolio X; = the proportion invested for security I,R; = the expected return of
security I and n =the number of securities.

public void retInitprice()
{
double tots=0.0;
double proportion=0.0;
double initialportval=0.0;
double totalinvest=0.0;
double portfolioreturn=0.0;
ArrayList folioentry=getFolio();
final int collectionsize=folioentry.size();
//get the size of the array//

for (int i=3;i<collectionsize;)
{ // LOOP 1//
Double totals=(Double)folioentry.get(i-1);
//Initial market price//
Integer totalnums=(Integer)folioentry.get(i-2);
//number of shares//
initialportval+=(totals.doubleValue()*totalnums.intValue());

i=i+4;

for (int j=3;j<collectionsize;)
{ // LOOP 2 //
Double sums=(Double)folioentry.get(Jj);//Expected returns//
Double totalsinitial=(Double)foliocentry.get(j-1);
//Initial market price//
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Integer totalnumsinitial=(Integer)folioentry.get(j-2);
//number of shares//
String security=(String)foliocentry.get(j-3);
//name of security//
tots=(totalsinitial.doublevValue()*
totalnumsinitial.intValue());//
total investment per share//
proportion=tots/initialportval;
//as a proportion of the initial porfolio valuation//
totalinvest=sums.doubleValue()*proportion;
//expected return (%) * proportion//
portfolioreturn+=totalinvest;
// Gross portfolio expected return//
Jj=j+4;

}

System.out.print (" Start Period Valuation of Portfolio
:"+initialportval);

System.out.print ("Expected Valuation of Portfolio Return
:"+portfolioreturn);

folioentry.clear ();

}

LisTING 1.14. Method retlnitprice in class Portfolio

From listing [[13} Loop 1 retrieves Objects from folioentry. This is done
within the for loop by taking ‘blocks’ of data. We know the position of the data
as String 0, Integer 1, Double 2, Double 3. The loop also does some arithmetic
on the data and produces the total initial value of the portfolio. Loop 2 returns
the primitive data types from the Object wrappers and performs the remaining
arithmetic for the portfolio.

1.4.5. Portfolio Risk Measurement

Our last example for the application classes makes use of methods from FinApps
and BaseStats. This application is to produce a risk measure for a portfolio.
The risk associated with a portfolio is related to the dispersion of individual
assets around the expected value and the degree of correlation between assets.
We can analyse a portfolio for dispersion in terms of the standard deviation
of the portfolio, where the variances and covariance’s are combined (Variance-
Covariance matrix) or we can separate the variances from the covariances.

The equation for the variance of a portfolio where variance and covariance
terms are separated is:

op =3 Xjoj+3 3 X X0y (14.5)
= =
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TABLE 1.11. Monthly Stock Returns for
three assets.

A B C
13.05 14.0 5.0
14.2 3.0 8.88
3.76 7.2 5.56
1.76 26.1 30.0
2.98 0.07 4.0
—-2.8 7.0 0.33
=7.0 -5.9 6.0
-2.0 2.0 0.01
2.0 15.0 1.2
14.0 —6.7 12.0
6.0 —1.1 2.99
—0.99 10.0 1.5

The equation for the combined variance of a portfolio is:

n n

o =YY X X0, (1.4.6)

i=1 j=1

In this example we will use Equation 1.1.10 to compute the standard deviation
of the portfolio. This is simply:

1

n 2

op=|>.> XX;0, (1.4.7)

i=1 j=1

The class SelectPortfolio uses the case statement to select the appropriate data
structures and methods in class Portfolio to implement Equation 1.1.11. The
input data is from Table [LT1l SelectPortfolio uses case ‘1’ to select the option
for processing raw data. Referring back to Listing [Tl we see that the various
data structures are set up and data entered to the ArrayList. On completion
the method proPanalysis in class Portfolio is called, which then implements
Equation 1.1.11. proPanalysis is shown in listing

public void proPanalysis ()
{

ArrayList riskdata=getRisk();
ArrayList folioentry=getFolio();
ArrayList rawdata=getRaw();
int blocksize=getDatalength();
int nos=getEntrynums();
double[ ] compare=new double[blocksize];
double[ ] codata=new double[blocksize];
double[ ][] covalues=new double[blocksize][2];
int size=rawdata.size();
double riskvalue=0.0;
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Double er;
Double covars;
int a=0;

int comp=0;

int end=0;

int gets=0;
while ( end<nos)

{

for(a=0;a<blocksize;a+t+)

{
Double value=(Double)rawdata.get (comp);
compare[a]= value.doubleValue(); // LOOP 1 //
covalues[a][0]=value.doubleValue();
comp++;

}

for (int counter=0;counter<size;) // LOOP2 //

{
for(int b=0;b<blocksize;b++)
{
Double covalue=(Double)rawdata.get (counter);
codata[b]=covalue.doubleValue();
// LOOP 3 //
covalues[b][1l]=covalue.doubleValue();
counter++;
}
double cors=DataDispersion.covar (covalues);
double[ ] answer2=DataDispersion.variances (covalues);
double[ ] meanvals=DataDispersion.dumean(covalues);
riskdata.add(new Double (meanvals[0]*
meanvals[1l]*cors));

}
end++;
}
for(int d=0;d<riskdata.size();d++)
{

er=(Double)riskdata.get(d);
double tempout=er.doublevalue(); // LOOP 4 //
riskvaluet+=tempout;
riskvalue=sqgrt(riskvalue);
}
}

LisTING 1.15. Method proPanalysis in class Portfolio

Loop 1 deals with basic data handling and retrieves the raw data into intermediate
array structures. Loop 2 performs the basis of the double summation calculation
for Equation 1.1.11. Calls are made to three methods from DataDispersion these
are cover, variances and dumean. Loop 2 also computes the factor; mean x1 *
mean x2 * covariance for entry to variance-covariance matrix. Loop 2 provides
the data which ‘virtually’ produces the matrix as shown in Table [ 12

Loop 4 uses the riskdata ArrayList to directly compute the standard deviation.

The values within the matrix are then multiplied by the expected returns for
each security and entered into the riskdata ArrayList. Finally Loop 4 provides
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TABLE 1.12. Variance Covariance Matrix

A B C
A 43.952338888888896 1.961638888888887 30.936955555555556
B 1.961638888888887 104.927290972222 21.83175555555555
C 30.936955555555556 21.83175555555555 61.94372222222221

Portfolio Standard Deviation: 83.10626977168779

the completion of Equation 1.1.11 by summing all of the entries and returning
the square root.
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Interest Rate Calculations

2.1. Compound Interest

2.1.1. Nominal and Effective Interest

Spot rates are interest rates based on the yield from pure discount bonds (The
one year Treasury bond is usual for the one year rate). We will cover bonds and
bond yields later on in this chapter. For now we will take it that the spot rate is
calculated from the yield on a bond contract. Spot rates are quoted on a period
(time related) basis as the 1 year, 2 year or n-year spot rate.

The n-year spot rate is given by:

V,
P =—- (2.1.1)
1+,

Where P, is the current market valuation of a pure discount bond with n years
and has a face value of V,. The spot rate is i,. In the absence of pure longer
term Treasury bonds, the n-year spot rate is calculated by taking the one year
calculation and using coupon bearing bond prices. Taking the market price as
P, and the face value of V,, with the coupon payment equal to C, the 2 year

spot rate can be calculated by solving:

o G W
2T(144) | (1+5)?

(2.1.2)

This process can continue in an iterative fashion to provide n-year spot rates,
based on n-year coupons. When spot rates are known the future values of
investments or debt can be discounted. For an overview see Adams et al (1993).

Interest rates are time dependent. A rate of 10% per annum is the effective
rate over 12 months, whereas the rate of 10% over 3 months is the effective rate
for a quarter year and not the effective rate per annum. If a quarterly rate of 10%
is extrapolated to an annual rate, the simple value is 10%*4 = 40%, convertible
quarterly. Interest offered on deposits with consumer banks is often expressed
as the nominal rate with a lesser period conversion. Legislative restrictions for
the rate being offered on deposits are sometimes circumvented by offering the
nominal rate, but having conversion at frequent periods. The converse is of
course true for lending rates.

33
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Effective rates refer to the time periods being quoted and have to adjust to any
other period which differs from the quoted basis. As an example an effective
annual rate of 4% is adjusted to an effective monthly rate by the relationship;
(14m)'2 =1+i, which gives us the value 1+m = (1.04)12, which is an effective
monthly interest rate of 0.327%.

Nominal interest can be viewed as the quoted rate and the real rate is the
quoted rate adjusted for inflation changes as reflected in the cost of living index.
If we take the cost of living index as C, being the year start and C, the year
end, the relationship is given as:

L _Gti)

. 1 2.1.3
=0 213)

Where i, is the real interest rate and i, is the nominal interest rate.

Example 2.0

During a base year with a nominal interest rate of 8% the cost of living index
started at 155 and ended at 159. What is the real interest rate ?

. 155(140.08)
[ =——-—

P 1 =0.0528 =5.28%.
159

Equation 2.T.4] shows the general formula for conversion of an annual nominal
rate back to the annual effective rate.

i
i=(l+%)”—l (2.1.4)

Where i is the effective annual interest, i(n) the nominal interest and n the number
of conversions per annum . Where n>1, the effective interest is greater than the
nominal.

Example 2.1

What is the effective annual interest rate for 8.9% per annum convertible 3
monthly?
i=(1+%8¥2)* —1=0.09201. The annual effective rate is therefore 9.2%.
As n — oo, the limit is reached and continuous compounding of interest takes
place. The effective rate is then referred to as the force of interest, /. The new
annual rate is given by i = ¢/ — 1.

Example 2.2

Given an effective annual rate of 9.2%, what is the force of interest?

i =e%%? — 1 =0.088, which gives us 8.8%.

An annuity certain is the term given to a series of payments (in arrears
or advance) for n periods. The total (accumulated) value for such a series of
payments is S,; "% and is arrived at as follows:
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Given a rate of interest r%, S,,, =141+ +...+ (147", a geometric

series with common difference (1+r) and n terms. The sum becomes

sn"
(14+r"—1 (1 + r)'

% = W=l If the payments are in advance, this value is S,"" =

Example 2.3

1. What is the accumulated value of $321.89, paid in arrears each period for 6
periods at an interest rate of 6%?

2. What is the accumulated value, if paid in advance?

1. LO0OR] _ 6.975. = 6.975*321.89 = 2245.18. This gives us an accumulated
value of $2245.18.

2. WHF-1x] 06 =7.393 = 7.393*321.89 = 2379.73. This gives us an accumu-

lated value of $2379.73.

These formulae are outlined in Listing 2] for the class Intr.

public final class Intr

{

private static double c10=0;
private static double cl11=0;
public Intr ()

{
this.c10=100; // Sensible default values are put here for the index
this.cl1=104;

}

public Intr (double a, double b)

{
this.cl0=a; // Calling with proper defaults is the preferred way
this.cll=b;

}

public static double realintr(double nintr) // implements

{

Co(1+1,
return 100*( (cl0*(l+nintr)/cll)-1.0); i,o(?)—l
1

}

public static double erate(double intr,double convertp

{ // Implements
return pow( (1+(intr/convertp)), convertp)-1; i=(1+ ‘(T"))” -1

}

public static double fint(double intr)

{ .
return log(l+intr); // implements i=el —1
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public static double ancertain(double intr, double n)

o (140" =1

{ // Implements S,
-

return ((pow( (l+intr), n)-1)/intr;

}

public static double ancertainAd(double intr, double n)

{

return (((pow((l+intr), n)-1)/intr)*(1l+intr));

o _ (1+n"—1
N r

//Implements S,;" (1+7r)

}

public static double pvancert(double intr, double n)

{

return (1.0-(1/pow((l+intr),n)))/intr;
1

1—
(1+4rr
r

// Implements i, =
}

public static double pvancertAd(double intr, double n)
{
return((l+intr)*(1.0-(1/pow((l+intr),n)))/intr);

1
- —
(I4+r"
r

//Implemets 4, = *(I47r)
}
public static double pvainfprog(double intr, double growth,
double value)
{
return value/intr-growth;
//1if growth =0, this is a perpetuity
A
// Implements ——
(r—v)
}
public static double pvanmult (double intr, double n)
{

double value=1/(1l+intr);
return ((pvancertAd(intr, n))-(n*pow(value, n)))/intr;

G, —na"
// Implements (la),) = ———

}
public static double effectintp(double annualintr,double p)
{
return pow( (l+annualintr), (1/p))-1; //given the effective
// annual int rate
// returns the nominal rate
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public static double effectann(double nomnualintr,double p )

{
return (pow( (l+nomnualintr/p), p)-1);//given a nominal rate
//returns the effective rate

LISTING 2.1. Calculation of compound interest

2.2. Present Value (PV)

Present values relate the value at today’s prices of an amount sometime in the
future. Present value calculations are used to value the worth of future payments
(the discount). Future value calculations can be based on a so-called riskless
basis with known interest rates, or can be based on varying interest and changing
risk environments.

A simple form of the PV formula for a single amount is given as:

A |
PV=>" ary (2.2.1)

i=1

This formula can be generalised for a series of varying amounts (A,) as: PV =

n
1

Yo
i=i (L+ 7 : : .

This formula calculates the series of equal payments (in arrears) over a given
time frame (n). Where, i is the time period and r is the interest rate.

2.2.1. Compounding Cashflows

The class PresentValue contains methods to calculate present values of a series
of cashflows. There are three basic methods in the class. As shown in Listing
below.

package FinApps;
import static.java.lang.Math.*;
public final class PresentValue {

/** creates a new instance of PresentValue */
public PresentValue() {
}
public double pV(double[ ] discounts,double[ Jcashflows)
{
int n=cashflows.length;
double presval=0;
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for(int i=0;i<n;i++)

presval+=discounts[i]*cashflows[i]; // returns sumof
1

N
//for each period cashflow

// discounted values.

}

return presval;

public double pV(double r,double[ ] cashflows)
{

int indx=1;

double sum=0;

for(int i=0;i<cashflows.length;i++)

{

sum+=(cashflows[i]/(pow((1l+r), (indx))));//Implements

n Al
PV = -
& E] (I+r)

indx++;
}
return sum;

}

public double pV(double r,double cash, int period)
{
double sum=0;
int indx=1;
for(int i=0;i<period;i++)
{
sum+=(cash/ (pow((1l+r), (indx))));// Implements PV =} m
i=1 r)!
indx++;
}

return sum;

LISTING 2.2. PresentValue

A series of equal payments can also be represented more conveniently as:

1

] — ——
a, = B L (2.2.2)

r
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Formula 2.2.2 is dealt with in Listing 2.1 for the class Intr.
The formulas in 2.2.1 and 2.2.2 apply for cash flows with annual compounding
and fixed interest rates for each period.

Example 2.4

What is the present value of $10, paid annually, for 3 years at 5% interest.
Using 2.2.1 the PV of $10 per annum over 3 years at 5% annual interest is:

Pv—i I (U 10
TS~ (140" (14005 " (140.05) (1+0.05)

i=1

=9.52349.070+8.638

This gives the sum of $27.31. ]

1
Using 2.2.2 we get, a,] = : e = %505;05’3 = 2.731, multiply this by the
payment of $10, = $27.31. The latter formula is used to construct standard tables
of compound interest.
A series of equal advance payments is the same as 2.2.2, with each discount

being a single period fewer. The formula is:

1

1—
iy = ﬁ*(l ) (2.2.3)

Example 2.5

What is the present value of $10, paid annually in advance, for 3 years at 5%
interest?
i 1
3
_ (1+0.05)%, (1

a,= 0.05) = 2.859"$10 = $28.59

2.2.2. Perpetuity and Annuity
A perpetuity is a series of indefinite payments of fixed amounts and is related

to 2.2.2 by:

! 1
(14+r=
r

perpetuity = x (amount $) (2.2.4)

A growing perpetuity of indefinite payments is one where each payment is some
multiple of the previous (growth). If the payments (A) grow by some amount
(1+v) then the PV is given by:
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A A(l+v) | A(l+v)?
T T ey T iy
this series reduces to:

+ ... if growth remains below the interest rate (r>v)

A
(r=v)

(2.2.5)

An increasing annuity is one where the first payment is one unit, the second
is 2 units... the nth payment is n units. If each payment is represented as

a= ﬁ, then the PV is given by the sequence a+2a*+ ...+ na”. Multiplying
by (1+r1). We get 1 +2a+3a*+...+na""!, subtracting a +2a*+ ...+ na"
gives us PV*r=1+4+a+a?+...+a"' —na". The PV of an increasing annuity

(usually written (/a),;) can therefore be represented by:

. n
a, —na

(la),; = (2.2.6)
Example 2.6

What is the value of an increasing annuity with a first payment of € 107 being
paid for 6 periods with an interest rate of 6%?

1
d, — na" 1_(1 0.06)°
(Ia), = Firstly, calculate 2.2.3 , i = #*(1 +0.06)
—6.9753
1 6
6.9753 — 6* (—)
1+(0.06
+000)) _ 6.3766. Multiplying by € 107

Thus, (la),; = 0.06

=€ 1752.29

2.3. Internal Rate of Return

The internal rate of return can be defined as that interest rate which balances the
total output of cashflow with the total input of cashflow for an investment over
a given time frame. The basic equation for this is the equation of value, which
equates the amount put in with the amount received. Satisfying this equation
gives the yield for a particular investment. As an example consider an investment
opportunity, which offers $8,000 after 7 years, for an initial outlay of $3,000.
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The yield is r per annum. So, 3,000(1 +r)7 = 8,000 = 14.9% = 14.9%.The
equation of value discounts all amounts to the same point in time. The equation

of value is summarised:
[ return
r=n,/——— (2.3.1)
tnvestment

The internal rate of return is therefore the rate of interest for which the amounts
paid out equal the amount paid in. Although the yield can be calculated for
any period, it is common to construct the calculation from present time. Yield
equations with multiple cash flows produce polynomials of degree n, which
means there are n possible roots to the equation. When solving these problems
this is something we should check for.

The equation of value for Internal Rate of Return (IRR) connects the amounts
paid into an investment with the amounts going out of that investment. The
general equation for the polynomial representing an IRR is constructed to have
the sum of positive cash flows minus the negative cash flows on one side equal
to zero on the other side. If we have a series of cash flows (positive) from C,
to C, with an initial (negative) cash flow of C,, the formula of 2.3.2 shows that
solving for r, the rate of return will give us the value required to reach zero.

n Cn
’; T G, =0 (2.3.2)
We have covered the IRR as an example in Chapter[I] The Listing shown in 1.10
for YieldBisect and 1.11 for NewtonYield provide details of these two classes
being used to provide IRR calculations.

2.4. Term Structures

The term structure of interest rates defines the various rates applicable throughout
the life of a particular financial instrument. Methods employed in defining the
term structure allow us to provide a discount factor for PV calculations that
incorporate varying spot rates and approximations of forward interest rates.

2.4.1. Rate Interchanges

The various rates; discount, forward and spot are all interchangeable. If we define
the PV of a set of abstract cash flows (abstract, as they relate to a default-free
security) as:

PV =Y Cd, (2.4.1)

t=1

The d,-discount factors are equivalent to (14+r,)"",t=1,2,...n
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The sum of the individual cash flows times the discount factor at a given
period (t) gives the price (at the discounted prices). This is effective for
discrete compounding periods. An analogous situation is the PV of a continuous
compounding of interest:

PV =Y Ce™" (2.4.2)

t=1

Both of these market discount functions relate to the prevailing spot rates at
times #,, ..t,..1,

Thus, the spot rate from 2.4.2 can be evaluated from the discount rate in
2.4.1 as:

n=i%g2 (2.4.3)

The discount rate is related to the spot rate by:
d, —e" (2.4.4)

The forward rate can be determined by the yield from a future borrowing time
frame. If a future frame is defined as times ¢, ..f,. The forward rate can be
constructed as that rate which incorporates the spot rate from present to the start
of the frame and the (estimated) forward (spot) for the time frame periods. From
2.4.2 and 2.4.3 this can be derived as: R p=e" e/n-n . which can be expressed
as :

R, =—2 245
iy (2.4.5)

Where R, is the forward rate and d, , d,, are the discount rates at times 7, and 7,.
Effectively a forward rate can be viewed as a series of discounts. As an
example.
£10 due in two years with a two year spot rate of 10% and a one year spot
rate of 8% has two equivalent series of values.

The PV = £8.264 for two years and the equivalent one year value discounted
10

by the forward rate(the rate between one and two) thus 2 must equal £8.264,

et > (1+0.8)
which is 12.03%.

In general, the relationship between the one year spot rates and forward rates
can be expressed as:

(1+n)’

(4R ) ="

(2.4.6)
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Forward rates can also be calculated from yields as:

153 U

r
L= L—5

R,,=n, (2.4.7)
The general formulae for interest terms is shown in class Interms shown in
Listing 23

Example 2.7

Given the one year spot rate of 7% and the two year spot rate of 74 %. Provide
the one and two year discount rate factors, together with the forward rate. Also,
given a one year discount factor of 0.95 and a two year discount factor of 0.825.
What are the spot and forward rates?

For the first part'

For time t=1. d,_; = ¢ *""=! = 0.9323. For time t =2 d,_, = ¢ %"»'=2 =

1+0.0725)?
0.8650. The forward rate is given by (R, ) = M —1=0.0750.
1,2 (140.07)
For the second part:
—1,(0.95 —1,(0.825
Fortimet=1.r_, = # =0.0512.Fortimet=2r,_, = % =
095
0.0961. The forward rate is given by R, = 0825 =0.141.

2.4.2. Spot Rates

Spot rates are related to the treasury yield curves . The yield curves are derived
from prices of treasury securities. A simple ‘bootstrapping’ technique to derive
spot rates from yield values can be used to derive a theoretical spot rate curve,
which reflects the changing (daily) interest rate climate over the life of a security.
The requirement for good data sources is paramount in constructing spot rates.
This is true whether we use bootstrapping or more sophisticated curve fitting
techniques.

The techniques involved with interest rate movements are based on govern-
ment bond market prices, the ‘on- the- run’ prices of government (riskless)
bonds are thought by some to be the best indicator of market rates, others prefer
to include the whole bond market, including ‘off- the- run’ bonds. On- the-
run securities such as T bills that pay no coupon and trade near to par are the
preferred securities to start off the bootstrapping process, since coupon paying
securities with a series of cash flows can be viewed as a series of zero coupon
securities with maturity payments equal to the cash flows.

Since the spot rate is defined by a zero coupon government bond and subse-
quent spot rates are extracted from coupon bearing securities, using their price
and maturity, the spot rate follows the yield curve of all the securities used in
the spot rate construction process. The US treasury daily yield curve covers so
called CMT’s (Constant Maturity Treasury rates) for fixed periods of 1,3 and
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6 months, together with 1,2,5,7,10 and 20 years. These rates can be used directly
as the current spot rate. Alternatively we can compute our own spots based on
direct market data of choice.

Example 2.8

A 1 year T bill with a yield of 6% is issued; this defines the present spot rate,
at the same time a 2 year T note is issued with a 10% coupon and price of £95.
The 2 year spot rate then becomes;

10 + 1o 95=9.433+ 1o
=—+——,5095=09. —_—
1.06 ~ (1+s,)? (14s,)?

therefore (1+4s,)* = 1.2855 and s, = 13.37%

95

For a semi annual coupon bond the spot rate for the nth period is given by the
solution to:

Gk | C+100
P =C : .
=l ey ey

j=1

(2.4.8)

Where P, the price per 100 units of par, C is the semi annual coupon per 100
units of par and s is the spot rate.

The spot rate is then given by:

C,+100
5 = s 1 1 (2.4.9)
Pn - Cn Y
]El (I+s;)/

When we have a list of the spot rates for a given period, it is possible to calculate
the required coupon to price the security at par. This is given by:

1

sy
C,—— Tl (2.4.10)
2": 1
= (1+s)
Equation 2.4.10 has a computationally more efficient form as;
1.0— —nl, (I+s,)
c,—-——-—¢ " " (2.4.11)

n .
Z e—ila(1+s;)

i=1
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The following prices and coupons are available from on the run issues,

Price

99.908
99.735
99.908
99.822
99.675
98.759

Coupon Maturity  Yield

1.78
2.26
3.16
3.67
4.14
4.92

2 1.83
3 2.36
5 3.18
7 3.70
10 4.18
20 5.02

The T-bill yield for the 6 months is 1.03 and for the 12 months is 1.28. What
is the 3 year spot rate?

From 2.4.8 :

99.735 = sum of cash flows discounted by the spot rates. The first period spot
rate is 1.03 and the second period is 1.28. The coupon is 2.26, so the first two

terms are;
2.26 2.26
99.735 = + so, 99.735—-4.410
(140.0128)  (14+0.0183)?
100 +2.26
= ; therefore,
(1+s3)°
102.26
95.3245 = m and s; = ((\/3 1.0727) — 1) = 0.02368

S3

s; is solved by using Equation [2.4.91 This is implemented in the class Spots
shown in Listing 2.3

Spots provides the overloaded method spotFcoupon for calculating the spot
rates, the first method provides spot rates for annual coupons the second invoca-
tion provides the addition of period adjustments to the algorithm. Spots also has
a method parCoupon that provides functionality to compute the coupon for a
par yield as outlined in Equations and ZZTTIThe application code for
Exercise 2.4 is shown in Listing Exercise 2.3.

package FinApps;
import java.util.*;
import java.lang.*;
import static java.lang.Math.*;

public class Spots {

public Spots() {

b
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public double[ ] spotFcoupon(double[ ][ ]Jpcdata)
{

int n= pcdata.length;

double[ ]spots=new double[n];

double price;

int s=0;
double indx=1.0;
spots[0]=((100.0/pcdata[0][0])-1);

price=(pcdata[0][0]/100.0);
for(s=1;s<n;s++){
indx++;
spots[s]=(exp(l/indx*log((pcdata[s][1]+100.0)
/(pcdata[s][0]-(pcdata[s][1l]*price))))-1);
price+=(exp(-indx*log(l+spots[s])));

}

return spots;

}

public double[ ] spotFcoupon(double[ ][ ]Jpcdata,int periods)
// for period frequency of annual coupons

int n=pcdata.length;
double[ ]spots=new double[n];
double price;
double temp=0;
int s=0;
double indx=1.0;
spots[0]=((100.0/pcdata[0][0])-1);
price=(pcdata[0][0]1/100.0);/* first entry */
for(s=1;s<n;s++){
indx++;
spots[s]=(exp(l/indx*log(((pcdata[s][1l]/periods)+100.0)/
(pcdata[s][0]-((pcdata[s][1]/
periods)*price))))-1);
price+=(exp(-indx*log(l+spots[s])));
}
return spots;
}
/* returns the n period coupon for par price given the spot rate */
public double parCoupon(double[ ]spots, int nperiod)
{
int i=spots.length;
int j=0;
int counter=0;
double flowdisc=0.0;
double finaldisc=0.0;
if (nperiod>i){

return -1.0;

}

finaldisc=(1.0-(exp(-nperiod*log(l.0+spots[(nperiod-1)1]))));
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for (double d:spots)
{
if (j<nperiod)
{
J++;
flowdisc+=((exp(-j*log(l.0+d))));

}

return(finaldisc/flowdisc);

LIsTING 2.3. Implementation of class spots

Listing 23] shows the abstract class Interms. This class provides methods
for calculating the various transformations of interest rates. The class is not
implemented directly but is accessed through its extending class.

public class Exercise_2_3 {

/** Creates a new instance of Exercise_2_3 */

public Exercise_2_3() {

}

public static void main(String[] args) {
//Assumes par value of 1,000
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(2);
formatter.setMinimumFractionDigits(2);
Spots s=new Spots();
double[ ][ Jtestdata=
{

{98.736,0.0},

{99.908,1.78},
{99.735,2.26},
{99.908,3.16},
{99.822,3.67},
{99.675,4.14},
{98.759,4.92}

}i
double[ Jansx=s.spotFcoupon(testdata);

for (double i:ansx) {
System.out.println("THE SPOT RATE IS == "+1i);

LisTING 2.4. Application code for Exercise 2.3
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package FinApps;
public abstract class Interms {
public abstract void intermstimes();

public Interms() {
}

public double disFromyld(double spotrate,double time)
{

return exp(-spotrate*time); //Implements d, = et

public double yldFromdisc(double discount,double time)
{

—1,(d
return -log(discount)/time; //Implements r, = #
}
public double forateFromspts (double spotl,double spot2)
{
return (pow( (l+spot2),2)/(l+spotl)-1);
(14r)?

Impl ts (1+R =
// Implements (1+ f1,z) atr)

public double forateFromdisc(double discountl,double discount2,
double timel,double time2)
{

return (log(discountl/discount2)/(time2-timel));
d,
ln(il)
d,

//Implements R, = P
2~ h

public double forateFromyld(double rl,double r2,double t1,double t2)
{

return (r2+*(t2/(t2-tl)))-(rl*(tl/(t2-tl)));
5] !

//Implements Ry, = NN
2—h 20

LisTING 2.5. Implementation of class Interms
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The interest term structures are divided into flat rate structures and the varying
rate structures. Both sets of structures will make use of the underlying methods
in the abstract class Interms.

2.4.3. Deriving the Spot Curve

Flat term structures take a single interest rate and provide the corresponding
discount, spot or forward rate for the given time period. The varying rate struc-
tures take a range of input interest rates and compute the appropriate output
rates. The input rates can be raw data taken from the markets (e.g. zero coupons)
or more usually, rates from published yield curve constructions. Published curve
data for the UK and US Debt Management Office (DMO) provides government
estimates of the government bond market prices. DMO tables are constructed
from the yield curve, which in turn, is constructed from coupon paying bonds
that are adjusted through a cubic spline model. The U.S DMO model provides
an estimate of the zero coupon yield, by reading off the daily curve at fixed
points (maturities) that are 1 month, 3 months, 6 months, 1 year, 2 years, 3 years,
5 years, 7 years, 10 years and 20 years.

There are two basic issues in constructing current interest rate data structures.
Firstly, the construction of an adequate model based on market data (this is
an issue addressed by the DMO type techniques and methodology). Secondly,
having data structures based on the adequate model which can provide valid
estimates of periods between maturity periods. We will not examine the first
issue, although it is worth noting that there are a range of possible construction
models that could be used to derive actual market metrics for the yield rates.
Anderson et al (2001).

The published daily DMO type data points offer discrete points from one
month to 20 years, these points (which are themselves the result of interpolation
from the ‘yield curve’) offer a direct value, or for intermediate values of time,
say 4 years, data for further interpolation. An excerpt from the US daily yield
data is shown in Table 21

TABLE 2.1. US Treasury daily yield data

Date Imo 3mo 6mo 1lyr 2yr 3yr Syr 7yr 10yr 20yr

08/02/04  1.28 1.50 1.78 2,12 266 3.06 3.68 4.10 4.48 5.22
08/03/04  1.37 1.48 1.77 211 266 3.05 3.67 4.08 4.45 5.20
08/04/04  1.34 1.49 1.76 2.11 266 3.05 3.66 4.08 4.45 5.20
08/05/04  1.34 1.48 1.75 2.09 264 3.04 3.64 405 4.43 5.18
08/06/04  1.36 1.44 1.67 191 240 279 340 3.84 4.24 5.04
08/09/04  1.40 1.51 1.73 197 245 286 345 3.88 4.28 5.06
08/10/04  1.42 1.50 L.75 201 255 294 352 394 4.32 5.08
08/11/04  1.40 1.44 1.73 2.00 254 291 351 392 4.30 5.07
08/12/04  1.31 1.43 1.73 1.99 252 289 347 3.89 4.27 5.05
08/13/04  1.32 1.44 1.72 197 247 285 342 385 4.22 5.02
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For times within the raw data range that have no corresponding observed data
points, interpolation is used to provide a yield. The interpolation method we will
use is Lagrange interpolation, which is sufficiently accurate for up to around
seven points. If we look at the lower end of DMO data, the Lagrange method
would be applied for the periods between 1 month and 5 years. For points at the
upper end we would use 3 years to 20 years. Interpolation between 10 and 20
years would not be of a high accuracy. Times selected outside of the data table
are regarded as errors.

Listing shows the class Intermstructure that provides methods for
computing the basic and current rate structures. The class extends methods in the
abstract class Interms. This gives access to basic transformations between the
various discount, spot and forward rate structures. In addition this class intro-
duces the facility for computing the current interest rate from table data, using a
Lagrange interpolator from the class Interpolate.

Current yield data is enabled by the method setCurrentRateData that sets a
current_flag variable and allows the current interest based methods to compute
forward, spot and discount rates. The method Errorcheck provides the class with
simple error checking for existence of yield data and validity of requests for time
periods, ensuring that interpolation is only done within the data time periods.

package FinApps;
import CoreMath. *;

public class Intermstructure extends Interms {
Interpolate It=new Interpolate();

// ‘It’ is an object which allows the computation of
private int current_flag=0; // the Lagrange interpolation
private double[ ][ Jcurrentdata; // This is the yield data

// in the order ..time/rates
public Intermstructure()
{
}

public double DiscpOne(double interate,double time_1) {

return disFromyld(interate,time_1);// As in Listing 2.6

}
public double SpotpOne(double interate,double time_1) {

return yldFromdisc(interate,time_1);// as in Listing 2.6
}
public double Forwdisc(double interate_1,double interate_2,
double time_1,double time_2) {
return forateFromdisc(interate_1,interate_2,time_1,time_2);
// As in Listing 2.6
}
public double Forwyld(double interate_1,double interate_2,
double time_1,double time_2) {
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return forateFromyld(interate_1,interate_2, time_1,time_2);
// As in Listing 2.6
}
public void setCurrentRateData(double[ ][ ]yielddata) { // Provides the
// yield data
currentdata=yielddata;
current_flag=1; // sets a flag to register that current data is
// available
}
public double getCurrentDiscOne (double timepoint_1) {
//computes the current discount factor
return Errorcheck(timepoint_1)==1? disFromyld(It.lagrange
(currentdata, timepoint_1),timepoint_1):0.0;
//Does error checking to see if request and data are
// valid if not this returns 0.0

}

public double getCurrentSpotOne(double timepoint_1) {// computes the
// current spot rate for the input timepoint
return Errorcheck(timepoint_1)==1? It.lagrange(currentdata,
timepoint_1):0.0;
}
public double getCurrentForwardrateYlds(double timepoint_1,
double timepoint_2) {

// computes forward spot rates
return(Errorcheck(timepoint_1)==1&Errorcheck(timepoint_2)==1)7?
(forateFromyld(getCurrentSpotOne(timepoint_1),
getCurrentSpotOne (timepoint_2), timepoint_1,timepoint_2)):0.0;

}
public void Intermstimes() {
// This implements the abstract method from Interms
}
private int Errorcheck(double timepoint){
// Method provides basic error checking
if (current_flag==0)
// checks to see if there is data from current set method

System.out.println("Error:no data array found for yield");
return 0;
}
int n=currentdata.length;
if ((timepoint<currentdata[0][0])]]
(timepoint>currentdata[n-1][0]))
// checks for bounds of calling method

{
System.out.println("Error:time variable out of data range");
return 0;
}
return 1;// if successful
}
}

LISTING 2.6. Implementation of class Intermstructure
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TABLE 2.2. Derived spot rates
from yield curve

N Spot Yield
0.50 1.030 1.030
1.00 1.280 1.280
1.50 1.553 1.551
2.00 1.835 1.830
2.50 2.114 2.104
3.00 2.375 2.359

Exercise 2.4.

Extending Exercise 2.3. Determine the semi annual spot rates for a 1.5 and 2.5
year maturity.

Firstly we need to use interpolation and find the intermediate half year yield
values then compute the price of each security given a coupon rate. Finally we
compute the spot rates from the interpolated price data and the quoted coupon
and coupon frequency. The solution is outlined in Table

Thus, the spot rate for 1.5 year maturity is 1.553 and the spot for 2.5 years
maturity is 2.114.

The application code is shown in Listing Exercise 271

package FinApps;

import java.text.*;

import java.io.*;

public class Exercise_2_4 {

public Exercise_2_4() {

}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(2);

Intermstructure i=new Intermstructure();
Spots s=new Spots();
Volatility vol=new Volatility(100.0,2.0);
double[ ][] xydat=
{
{0.5,1.03},
{1.0,1.28},
{2.0,1.83},
{3.0,2.36}
yi
int j=0;
double mat=0.5;
double firstpoint=i.lagraninterp(xydat,1.5);
double secondpoint=i.lagraninterp(xydat,2.5);
double[] yields={1.03,1.28,firstpoint,1.83,secondpoint,2.36};



2.4. Term Structures 53

double[ ] coupons={0.0,0.0, (firstpoint-0.4),1.53,
(secondpoint-0.3),2.0};

double[ ][ ]Jpcdata=new double[6][2];

for (double yld:yields) {

pcdata[]j][0] =vol.Bpricing(yld,mat,coupons[j]);

pcdata[j][1l]=coupons[]j];

mat+=0.5;

J++;

}

int n=0;
double[ ]Jansx=s.spotFcoupon(pcdata,2);
for(double x:ansx)

{

System.out.println("THE SPOT RATE IS ==
"+formatter.format((200.0*x))+" For PRICE ==
"+formatter.format (pcdata[n][0])+" and COUPON ==
"+formatter.format(pcdata[n][1])+" YIELD ==
"+formatter.format(yields[n]));

n++;

}

}

LisTING 2.7. Application code for Example 2.4

Exercise 2.5

Using the daily yield data for years 1 to 7 from Table Bl for each security
trading at par show the required par yield, in terms of the coupon level and
compare to the yield curve. Calculate the discount rate and implied forward
rates. Compare these rates with data from 2nd and 13th of August.

Since the table provides spot rates directly we only need to do simple inter-
polation of the data to get the 4 and 6 year values. Both data sets are shown in

Table 23

TaBLE 2.3. Interpolated spot rates from Treasury
yield estimates

Daily 02/08 Daily 13/08

MATURITY SPOT% MATURITY SPOT%

1.000 2.120 1.000 1.970
2.000 2.660 2.000 2.470
3.000 3.060 3.000 2.850
4.000 3.389 4.000 3.157
5.000 3.680 5.000 3.420
6.000 3.930 6.000 3.653

7.000 4.100 7.000 3.850
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Using the data of Table 23] the required par yield for each maturity is
calculated using Equation This provides us with required coupon level
for a security trading at par.

The required yield (both periods) for an annual coupon payment is shown in
Table 2.4.

The comparisons of par yield to spot rates are shown in Figures Z.TAl for the
period 02/08 and for period 13/08.

In both periods the par yield follows the yield curve shape, with the par rates
being less than the yield.

The discount rate and forward rate are computed from the derived yield curve
using Equations 244 and 2471 The data is shown in Table 23

The relationship between the various rates is shown in Figure for the
period 02/08.

TABLE 2.4. Par yield and Spot rates for varying maturities, based on par trading securities
with an annual coupon.

MATURITY PAR YIELD(02/08) SPOT PAR YIELD(13/08) SPOT
1.0000 0.0212 0.0212 0.0197 0.0197
2.0000 0.0265 0.0266 0.0246 0.0247
3.0000 0.0304 0.0306 0.0283 0.0285
4.0000 0.0336 0.0339 0.0313 0.0316
5.0000 0.0363 0.0368 0.0338 0.0342
6.0000 0.0386 0.0393 0.0359 0.0365
7.0000 0.0402 0.0410 0.0378 0.0385

Par Yield and Spot rates for 02/08/04
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FIGURE 2.1A. Par yield and yield curve for period 02/08/04.
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Par Yield and Spot rates for 13/08/04
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FIGURE 2.1B. Par yield and yield curve for period 13/08/04.

Discount and forward rates for spot rate of period 02/08
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FIGURE 2.2. Relationship between Spot, Discount and Forward rates.

55



56 2. Interest Rate Calculations

TABLE 2.5. Discount and forward rates for periods 02/08/04 and 13/08/04

YIELD (02/08) DISCOUNT FACTOR (02/08) FORWARD RATE (02/08)
0.0212 0.9790 0.0320
0.0266 0.9482 0.0386
0.0306 0.9123 0.0438
0.0339 0.8732 0.0484
0.0368 0.8319 0.0518
0.0393 0.7899 0.0512
0.0410 0.7505
YIELD (13/08) DISCOUNT FACTOR (13/08) FORWARD RATE (13/08)
0.0197 0.9805 0.0297
0.0247 0.9518 0.0361
0.0285 0.9181 0.0408
0.0316 0.8814 0.0447
0.0342 0.8428 0.0482
0.0365 0.8032 0.0504
0.0385 0.7638

The application code is shown in Listing Exercise 2.8

package FinApps;

import java.text.*;

import java.io.*;

public class Exercise_2_5 {

public Exercise_2_5() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();

formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(4);
Intermstructure i=new Intermstructure();
Volatility v=new Volatility(100.0,1);

Spots s=new Spots();
double[ ]Jvals={4.0,6.0};
double dat02[][]1= {

{1.0,2.123%,

{2.0,2.66},

{3.0,3.06},

{5.0,3.68},

{7.0,4.10}

+i

double[ ][ ]datl3= {
{1.0,1.97%,
{2.0,2.47y%,
{3.0,2.85},
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{5.0,3.42},
{7.0,3.85}
}i
double[ ] reqdyield_02;
double[ ] reqdyield_13;

double[ ][ ]newdata ;

double[ ][] dat_02;

double[ ][] dat_13;
int frwd;

frwd=2;// conter variables
dat_02=i.lagraninterp(dat02,vals);
dat_13=i.lagraninterp(datl3,vals);// get the interpolated data

try{

PrintWriter w=new PrintWriter (new FileWriter
("c:\\data_for_13_5B.txt"),true);

PrintWriter pw=new PrintWriter (new FileWriter
("c:\\data_for_02_5B.txt"),true);

System.out.println(" Daily 02/08 Daily 13/08 ");
System.out.println(" MATURITY SPOT MATURITY SPOT");

for(int j=0;j<dat_02.length; j++)

{

System.out.println(" "+formatter.format(dat_02[j][0])+
" "+formatter.format(dat_02[j][1])+
" "+formatter.format(dat_13[j][0])+
" "+formatter.format(dat_13[j][1]));

dat_02[j][1]=(dat_02[3j][1]/100.0);

dat_13[j][1]=(dat_13[3][1]/100.0);

// put data into decimal from percentages

}

System.out.println(" MATURITY PAR YIELD(02/08)

SPOT PAR YIELD(13/08) SPOT");
reqdyield_02=s.parCoupon(dat_02);
reqgdyield_13=s.parCoupon(dat_13);

// get the required yield in terms of the coupon level required

for(int j=0;j<dat_13.length; j++)
{

System.out.println(" "+formatter.format((j+1))+
"+formatter.format (reqdyield_02[j])+
"+formatter.format(dat_02[j][1])+
"+formatter.format (reqdyield_13[j])+
"+formatter.format(dat_13[j1[1]));

}
i.setCurrentRateData(dat_02);
System.out.println( "YIELD (02/08) DISCOUNT RATE (02/08)
FORWARD RATE (02/08) ");

for(int j=0; j<dat_02.length; j++)

System.out.print(formatter.format(dat_02[j][1])+" "
+formatter.format(i.getCurrentDiscOne((j+1))));
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pw.print((j+1)+","+dat_02[jI[1]+","+
((1.0-(i.getCurrentDiscOne(j+1))))+",");
if(frwd<(dat_02.length+l))

{
System.out.println(" "+formatter.format
(i.getCurrentForwardrateYlds((frwd-1), (frwd))));
pw.println(i.getCurrentForwardrateYlds((frwd-1), (frwd)));
frwd++;
}
}
System.out.println();
frwd=2;
i.setCurrentRateData(dat_13);
System.out.println( "YIELD (13/08) DISCOUNT RATE (13/08)
FORWARD RATE (13/08) ");
for(int j=0;j<dat_13.length; j++)
{
System.out.print(formatter.format(dat_13[j][1])+" "
+formatter.format (i.getCurrentDiscOne((j+1))));
w.print((j+1)+","+dat_13[j][1]+","
+((1.0-(i.getCurrentDiscOne(j+1))))+",");
if(frwd<8)
{
System.out.println(" "+formatter.format
(i.getCurrentForwardrateYlds((frwd-1), (frwd))));
w.println(i.getCurrentForwardrateYlds((frwd-1), (frwd)));
frwd++;
+
}
w.println(" ");
pw.println(" ");
pw.close();
w.close();
+
catch(IOException foe)
{
System.out.println(foe);
}
}

LisTING 2.8. Application code for Example 2.5
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Bonds

3.1. Bonds — Fixed Interest

Bonds are loan products which can be traded before their repayment date. Bonds
carry an interest rate (coupon) on the loan together with a face value (par). The
market price is the current trading value of a bond. There are three basic types
of bond: For an overview see the book by Fabozi.

1. Domestic, carrying local currency. These include products such as Treasury
notes, bonds and local government notes/bonds

2. Foreign bonds carry local currency and are traded in the local markets. The
borrower (Issuer) is however a foreign government or corporation

3. Eurobonds carry a variety of currencies and are issued by banking syndicates.
It is a means of governments and corporations to borrow in the denominated
currency from non domestic lenders. The various bond markets pay interest
according to the rules applied for the market and type of bond. Bonds can be
purchased at any time between interest payment (settlement) dates.

The accrued interest is that amount which is due between the last settlement
date and the present transaction date. The prices quoted in the market does not
generally include the accrued interest (which nevertheless is paid) and is referred
to as the ‘clean’ price. Prices which do reflect accrued interest are referred to as
‘dirty’ prices.

The UK and Japanese markets calculate interest on a 365 day basis. In common
with the US treasury bonds, these bonds pay interest twice yearly. Eurobonds
pay interest annually. Markets vary in the way accrued interest is calculated,
with Japan and UK being based on a 365 day year, Eurobonds a 360 day year
and US treasury issues based on elapsed time between coupons. For any market
the general points to consider for accrued interest are the coupon dates, the
settlement date and for some bonds (including UK Gilts) whether the issues are
cum or ex dividend (with or without the next coupon payment). UK Gilts go ex-
dividend 5 weeks 2 days prior to the next payment date. With the consolidation
of financial instruments throughout the Euro zone. Many European countries
have harmonised to an Actual/actual day count convention. The table below
refers to existing and pre-harmonising (‘legacy’) bonds in the market. Some
countries have ‘reconventioned’ the day counts for existing bonds and others are
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in a ‘phasing’ stage of moving to a fully harmonised convention. Many European
bonds have a mixture of conventions for the day count conventions; the specific
issues provide the relevant details.

As an example Irish government Euro denominated bonds outstanding from
June 2004 have benchmark bonds on an annual basis using the actual/actual
convention with annual bonds using 30E/360 and semi annual bonds paying
actual/365.

US Treasury Bills are issued once a week for the 13 and 26 week bills
and once every fourth week for the 52 week bill. The selling method is by
multiple price bidding. It is possible to buy these issues on a competitive or non
competitive basis. Treasury bills are sold at auction with a discount and pay no
coupon. The pricing consists of a bid near to the face value, e.g. a number of 13
week bills might be bid at 98.754. If this bid wins the investor buys a number of
$1000 bills at $987.54 that can be redeemed for this face value in 13 weeks. The
non competitive bidder agrees to accept the issues at the end of auction average
price for the accepted competitive bids. The average price is calculated from the
range of highest competitive bids for the issues which remain (after taking out
the allocation for non competitive bidders). The weekly and four weekly current
issues are referred to as on-the-run. Issues which are older than 1 week (or 4
weeks for the 52 week issue) are referred to as off the run; there is a secondary
market for both on-the-run and off- the-run bills.

Treasury bills can be purchased by an investor through the US federal banks
or on-line through the internet. The market is also served by domestic banks
and brokerages. The pricing mechanisms offered by the secondary markets are
published widely and conform to standard practices. The quoted prices are in
terms of the ‘bank discount method’ on the bid (what the broker will pay) and ask
(what the broker will sell at) price. The calculation year for bills has 360 days, so
a bill quoted as 128 days to maturity with a bid of 4.95% means that this discount
is effectively 360/128 of the actual discount. To find the actual discount multiply
by 128/360. So 4.95% becomes an actual discount of 1.760% of the face value.
For an ask price of 4.93, the actual discount is 1.752%. The difference between
the bid and ask price is the so-called dealer spread (1.7600 — 1.7528 = 0.0072).
Published data usually includes the equivalent yield which is calculated by
annualising the ask cash discount divided by the purchase price. For this example
(a nominal $100) the ask discount is (100% — 1.7528%) = $98.247 giving a
yield of 1.752/98.247 = 0.01784. = 1.784% (rate of return). Annualising this,
1.784*365/128 = 5.087%.

Treasury notes issued by the US government have redemption (maturities)
periods from 1 to 10 years with coupons usually being twice annually. Notes
are issued with nominal values of $1000 and above. Monthly auctions are held
for the two and five year notes, every three months three and ten year notes
are auctioned. The secondary market is also quite liquid for notes. The quoted
prices are in terms of %% for bid and ask, with the annual rate being quoted as a
percentage. In the published data a bid or ask shown in the form: 101 : 01 which
equates to 101%. The published data also usually includes the gross yield to
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maturity based on the currently quoted ask. The ask yield is quoted as the annual
effective value. The dealer’s spread is calculated as the difference between the
bid and ask prices.

A treasury note (from settlement on 8th October 2004) with the following

quotes:
Rate  Maturity Mo/Yr Bid Asked Chg Ask Yld
7
5§ Nov 06 100:10 100:12  +2 5.68

Has dealer’s spread of 100%% — 100%% = —%%. Thus for a nominal $1,000
note the spread is $0.625. The coupon is 5%% paid semi annually at 2.9375% =
$29.37. The bid changed from the previous day by —}—%%. The effective annual
yield is 5.68%. This is based on the ask price of 100:12.

The annual yield can be calculated (if not available) as the internal rate of

return. By using Equation 2.3.4 In the form:

5.875 1 1000
o 20849 [T 20849 — 1003.75
(14i) 05 (14i) 05

The yield quote for treasury bonds is based on the ask price. However the
actual price paid, which would include the accrued interest will alter the ask
yield to an actual yield based on the total market price. In our example (and
assuming the coupon payment date is also the 8th) there is accrued interest of
153 days divide this by 183 = 0.836. Multiplying by the annual rate applied
twice yearly (5.875/2) gives us $24.55 per $1,000 note. The actual cost for the
note is therefore $1003.75 4 $24.55 = $1028.30. The yield is now 4.438%.

The fraction 2.0849 is given by the time to maturity of 2 years 31 days. The 31
days are made up from 24 days in the settlement month (inclusive of settlement
day) and 7 days in the maturity month (exclusive of the maturity day) giving,
24 (%) The fraction 0.5 is the term period for coupon payments (6 months)
as a ratio of 12 months. This particular equation will of course give the semi
annual yield (the proportion of the term period).

Listing BTl Shows the class Accruedconvention which computes the accrued
time between settlement and the next coupon date for the various day count
conventions of the major markets as outlined in Table Bl The class has two
public methods daycounts and getPreviousCouponDays. The daycounts method
uses a case switch to select the six major day count conventions. The method
daycounts is called with a variable flagvalue which determines the market
selection implemented via the case switch. The two remaining variables are
Calendar objects for the settlement date and next coupon. The accrued time in
this class is based on the total number of days in the convention for the market.
The number of days between the settlement date and the next coupon is taken,
according to market convention. The number of days is then divided by the total
to produce a weighting factor. The conventional expression of accrued interest
takes into account the coupon basis (number of days in the coupon period).
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TABLE 3.1. Bond day count conventions

Some Day Count Conventions

Market Coupon Frequency Count

US Gov’t Semi annual Actual/Actual
UK Gov’t Semi annual Actual/Actual
Australian Gov’t Semi annual Actual/Actual
Austrian Gov’t*1 Annual 30E/360
Belgian Gov’t Annual 30E/360
Canadian Gov’t Semi annual Actual/Actual
Danish Gov’t Annual 30E/360
Dutch Gov’t Annual 30E/360
Eurobond*1 Annual 30E/360
French Gov’t*1 Annual Actual/Actual
German Gov’t*1 Annual 30E/360

Irish Gov’t*1 Annual Actual/365
ITtalian Gov’t*1 Annual 30E/360
Japanese Gov’t Semi annual Actual/365
New Zealand Gov’t Semi annual Actual/Actual
Norwegian Gov’t Annual Actual/365
Spanish Gov’t Semi annual Actual/Actual
Swedish Gov’t Annual 30E/360
Swiss Gov’t Annual 30E/360

*1 denotes actual/actual reconventioned from 2000

The application program using this class would make the appropriate market
basis adjustment by a multiple of the coupon frequency. The daycounts method
returns the accrued value proportion for the period settlement to next coupon
date. The method getPreviousCouponDays returns the proportionate value for
the period last coupon to settlement, which is the portion of accrued time due to a
seller.

package FinApps;

import java.util.*;

import static java.util.Calendar.*;
public class Accruedconvention {

/** Creates a new instance of Daycounts according to the convention */
//Default constructor assumes 2*6 monthly coupon payments...//
//semi annual//

public Accruedconvention() {

this.coupons=2.0;

}

public Accruedconvention(double couponperiod)

// non default constructor to set the coupon period monthly times
per annum

{

this.coupons=12.0/couponperiod;

}

public double getPreviousCoupondays () {

return previouscoupondays;
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}

private void setPreviousCoupondays (double prevcoupdate) {
this.previouscoupondays=prevcoupdate;

}

Calendar previouscoupon=Calendar.getInstance();

private double coupons;

public double previouscoupondays;

public double daycounts(int flagvalue,Calendar settlementdate,

Calendar nextcoupondate) {

Calendar temp=Calendar.getInstance();
previouscoupon.set (YEAR, (nextcoupondate.get (YEAR)));
previouscoupon.set (MONTH, (nextcoupondate.get (MONTH)-6));

63

// assumes default 6 monthly period

previouscoupon.set (DATE, (nextcoupondate.get (DATE)));
int actualday=0;

int actualdays=0;

int samedays=0;

switch(flagvalue) {

case 1:

if (settlementdate.get (MONTH)==nextcoupondate.get (MONTH))

//Actual/actual in period (eg, US gov)

samedays=(nextcoupondate.get (DATE)
-settlementdate.get (DATE)) ;
for(int n=(previouscoupon.get (MONTH)+1);
n<nextcoupondate.get (MONTH) ;n++) {
temp.set (MONTH,n) ;
actualdays+=temp.getActualMaximum(DAY_OF_MONTH) ;

}

actualdays+=(previouscoupon.getActualMaximum(DAY_OF_MONTH)

-previouscoupon.get (DATE));
setPreviousCoupondays ( (double) (actualdays-samedays)/
(actualdays));
return (double)samedays/actualdays;

int setdays= (settlementdate.getActualMaximum(DAY_OF_MONTH)-

settlementdate.get (DATE));
actualday=setdays;

for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH) ;i++) {
temp.set (MONTH,1i);
actualday+=temp.getActualMaximum(DAY_OF_MONTH) ;

}

actualday+=nextcoupondate.get (DATE) ;

actualdays=nextcoupondate.get (DATE);

temp.clear();

for(int n=(previouscoupon.get (MONTH)+1);

n<nextcoupondate.get (MONTH) ; n++) {

temp.set (MONTH,n);
actualdays+=temp.getActualMaximum(DAY_OF_MONTH) ;
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actualdays+=(previouscoupon.getActualMaximum(DAY_OF_MONTH)
-previouscoupon.get (DATE));
setPreviousCoupondays ( (double) (actualdays-actualday)
/(actualdays));
return (double)actualday/actualdays; //returns fraction of the
// coupon period

case 2:
for (int n=(previouscoupon.get (MONTH)+1);
n<settlementdate.get (MONTH) ;n++) {

temp.set (MONTH,n);
actualdays+=temp.getActualMaximum(DAY_OF_MONTH) ;

}

actualdays+=(previouscoupon.getActualMaximum

(DAY_OF_MONTH) -previouscoupon.get (DATE) ) ;
actualdayst+=settlementdate.get (DATE) ;

if(settlementdate.get (MONTH)==nextcoupondate.get (MONTH))
//Actual/365 (eg,UK gov)

samedays=(nextcoupondate.get (DATE)
-settlementdate.get (DATE));
setPreviousCoupondays ( (double) (((365.0/coupons)
-samedays)/(365.0/coupons)));
//requires annual multiple of coupon rate
return (double) (samedays/(365.0/coupons)) ;
//returns 1/365 ths of the annual coupon rate
}
actualday= (settlementdate.getActualMaximum(DAY_OF_MONTH)
-settlementdate.get (DATE));

for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH);i++) {
temp.set (MONTH,1i);
actualday+=temp.getActualMaximum(DAY_OF_MONTH) ;

}
actualday+=nextcoupondate.get (DATE) ;
System.out.println("Actual days between coupon

and settlement =="+actualdays);
setPreviousCoupondays ( (double) (actualdays/

(365.0/coupons)));
return (double) (((365.0/coupons)-actualdays)/
(365.0/coupons) ) ;

case 3:
for(int n=(previouscoupon.get (MONTH)+1);
n<settlementdate.get (MONTH) ;n++) {

temp.set (MONTH,n);
actualdays+=temp.getActualMaximum(DAY_OF_MONTH) ;

}

actualdays+=(previouscoupon.getActualMaximum

(DAY_OF_MONTH) -previouscoupon.get (DATE)) ;
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actualdays+=settlementdate.get (DATE);

if (settlementdate.get (MONTH)==nextcoupondate.get (MONTH))
//Actual/365 or 366 in leap year (eg,

samedays=(nextcoupondate.get (DATE)
-settlementdate.get (DATE));

int total;
total=(previouscoupon.getActualMaximum(DAY_OF_YEAR)|nextcoupondate
.getActualMaximum(DAY_OF_YEAR))==366?366:365;
setPreviousCoupondays ( (double) ( ( (total/coupons)

-samedays)/(total/coupons)));
return (double)samedays/ (total/coupons);
}
actualday= (settlementdate.getActualMaximum(DAY_OF_MONTH)
-settlementdate.get (DATE));
for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH);i++) {
temp.set (MONTH,i);
actualday+=temp.getActualMaximum(DAY_OF_MONTH) ;

actualday+=nextcoupondate.get (DATE) ;
int totaldays;

totaldays=(previouscoupon.getActualMaximum(DAY_OF_YEAR)
nextcoupondate.getActualMaximum(DAY_OF_YEAR))
==3662366:365;
System.out.println("Actual days between coupon
and settlement =="+actualdays);
setPreviousCoupondays ( (double) (actualdays/
(totaldays/coupons)));
return (double) ( ((totaldays/coupons)-actualdays)/
(totaldays/coupons)) ;
case 4:
if (settlementdate.get (MONTH)==nextcoupondate.get (MONTH))
// Coupon annual eg US Gov't agency..

samedays=(nextcoupondate.get (DATE)
-settlementdate.get (DATE));
setPreviousCoupondays ( (double) ((360.0)-samedays)/
(360.0));
return (double)samedays/(360.0);
}
actualday= (settlementdate.getActualMaximum(DAY_OF_MONTH)
- settlementdate.get (DATE));
for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH) ;i++) {
temp.set (MONTH, i) ;
actualday+=temp.getActualMaximum(DAY_OF_MONTH) ;
}
actualday+=nextcoupondate.get (DATE);
setPreviousCoupondays ( (double) ((360.0)-actualday)/
(360.0));
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return (double)actualday/(360.0);
case 5:
if(settlementdate.get (MONTH)==nextcoupondate.get (MONTH))
//30/360..one day only. . (eg,US corporate)

int numsetd=settlementdate.get (DATE);
numsetd=numsetd==31?30:numsetd;

int numd=nextcoupondate.get (DATE);
numd=( (numd==31) & (numsetd==30) ) ?30:numd;
samedays=numd-numsetd;
samedays=(nextcoupondate.get (DATE)

-settlementdate.get (DATE));
samedays=samedays==31?30:samedays;
setPreviousCoupondays

((double) ((360.0/coupons)-samedays)/(360.0/coupons));
return (double)samedays/(360.0/coupons);
}
int couponset;
int dayset=settlementdate.getActualMaximum(DAY_OF_MONTH) ;
int dateset=settlementdate.get (DATE);
dayset=dayset==31?30:dayset;
dateset=dateset==31?30:dateset;
actualday=dayset-dateset;
for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH) ;i++) {
temp.set (MONTH,1i);
couponset=temp.getActualMaximum(DAY_OF_MONTH) ;
couponset=( (couponset==31) &(dayset==30))?30:couponset;
actualday+=couponset;

}

int coupdate=nextcoupondate.get (DATE);

coupdate=( (coupdate==31)&(dateset==30))?30:coupdate;

actualday+=coupdate;

setPreviousCoupondays ( (double) ((360.0/coupons)
-actualday)/(360.0/coupons));

return (double)actualday/(360.0/coupons);

case 6:
if(settlementdate.get (MONTH)==nextcoupondate.get (MONTH) )
//30e/360
{

int numdays=nextcoupondate.get (DATE) ;
numdays=numdays==31?30:numdays;
int numsetdays=settlementdate.get (DATE);
numsetdays=numsetdays==31?30:numsetdays;
samedays=numdays-numsetdays;
setPreviousCoupondays ( (double) ((360.0/coupons)
-samedays)/(360.0/coupons));
return (double)samedays/(360.0/coupons);
}
int couponsettle;
int daysettle=settlementdate.getActualMaximum
(DAY_OF_MONTH) ;
int datesettle=settlementdate.get (DATE);
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daysettle=daysettle==31?30:daysettle;
datesettle=datesettle==31?30:datesettle;
actualday=daysettle-datesettle;
for(int i=(settlementdate.get (MONTH)+1);
i<nextcoupondate.get (MONTH);i++) {
temp.set (MONTH,i);
couponsettle=temp.getActualMaximum(DAY_OF_MONTH) ;
couponsettle=couponsettle==31?30:couponsettle;
actualday+=couponsettle;
}
int coupondate=nextcoupondate.get (DATE);
coupondate=coupondate==31?30:coupondate;
actualday+=coupondate;
System.out.println("actualdays "+actualday);
setPreviousCoupondays ( (double) ((360.0/coupons)-actualday)
/(360.0/coupons));
return (double)actualday/(360.0/coupons);
default: throw new AssertionError
("Unknown market :"+flagvalue);

}
}

LisTING 3.1. Computation of accrued time for major markets

Exercise 3.1

A US corporate issue has an annual coupon of 12% with payment dates of May
17th and November 17th. The settlement date is June 3rd. What % of the coupon
is accrued interest for this issue? For 100 units of par value what is the accrued
value due to the seller? What value would be due to the seller if this issue was
US treasury or an Irish government semi annual issue?

For the first part: Total days between payments = 180. Total time from
first payment to settlement = 16 days. The semi annual coupon is 6%.
Accrued rate is therefore 16/180 = 8.889%. The value due to the seller is
8.889%0.12/2 = $0.533. For the second part: US treasury has 184 days between
coupons. Total time between first payment and settlement =17 days. The accrued
value is therefore 9.239*0.12/2 = $0.554. For the Irish Government Issue the
value is 17 days for time between coupon payment and settlement. For the Irish
issues there are 365 days in the year, which is 365/2 between coupons. The
accrued value is therefore 17/(365.0/2.0) = 9.315%. The value is € 0.558904.

The application code for Exercise B.1]is shown in Listing

package FinApps;

import java.util.*;

import static java.util.Calendar.*;
import java.text.*;

public class Exercise_3_0 {

public Exercise_3_0() {
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public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(6);
formatter.setMinimumFractionDigits(3);
Calendar settlement=Calendar.getInstance();
Calendar nextcoupon=Calendar.getInstance();
settlement.set(2004,5,3);//
nextcoupon.set(2004,10,17);//next coupon
double coupon=0.12;
double couponfrequency=2.0;
Accruedconvention days=new Accruedconvention();
enum Markets{
UStreasury(l),Irishsemi(2),UScorporate(5);
private final int value;
Markets(int value){ this.value= value;}
public int mkt(){return value;}

}i

for (Markets m:Markets.values())

{

days.daycounts(m.mkt(),settlement,nextcoupon);
double daytimes=days.getPreviousCoupondays();
System.out.println("For The "+m+ "The accrued % of the coupon ==
"+formatter.format((daytimes*100.0))+"%"+" accrued value
per $100 par == $"+formatter.format( (daytimes* (coupon
/couponfrequency)*100.0)));

LISTING 3.2. Application code for Example 3.1

3.2. Bond Prices

Bond pricing can be based on so-called ‘risk-free’ (e.g., government issues) or
on ‘risk-carrying’ (public corporations and the like) issues. The simplest bond is
risk free and pricing can be based on the value of coupons, market price, face
value and environmental factors such as the tax regime, inflation and changing
interest rates over the bond’s lifetime. The simple bond price is calculated as:

T
C, . . . .
M,= r:Zl e Where M, is the market price and C, is the cashflow at time

t, r is the interest rate. Thus the simple fixed interest rate risk free bond is priced
by the sum of the discounted cash flows. It is assumed in this equation that the
final cashflow payment includes the face value at time r = 7.
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3.2.1. Interest Yields

Interest rates for bond yields can be calculated in several ways. The choice
depends on the market and the product together with considerations of environ-
mental factors.

Gross and net yields are of interest to investors who are assessing potential
income from a particular set of issues. Gross and net yields are calculated by:

Gross Yield (Y,) = coupon/clean price *100%. Net yield takes into account
the investors tax liabilities. Net Yield (Y,) = (1 —1)*(¥,). Where ¢ is the tax
rate. Expenses can be added (for purchase) or deducted (for sale) as required.

Example 3.1

Bond A is quoted as $218 with a nominal $200 and a coupon of 10%. Bond B is
quoted as $327 with a nominal $300 and a coupon of 10%. Calculate the Gross
yield. If the investor has a tax liability of 22% calculate the Net yield.

For A: (Y,) =20/218°100 = 9.17%. (¥,) = (1 —0.22)*9.17 = 7.15%.
For B: (Y,) =30/327*100 = 9.17%. (¥,) = (1 —0.22)*9.17 = 7.15%.

3.2.2. Yield to Maturity

Bond prices are sensitive to interest rates and the internal rate of return for a bond
gives an indication of the required yield to maintain the cashflows. The yield
to maturity of a bond is the internal rate of return. Equation has already
been applied to a general IRR calculation. This equation is also applicable to
calculating the yield to maturity of a bond.

The Gross Redemption Yield is that yield which is returned annually to a
bondholder. The gross yield takes no account of tax or transaction costs. For the
US and UK markets with bond’s paying a coupon twice annually. Equation 2.3.3
is applicable.

Example 3.2
A US bond has a term of 10 years. The gross yield is 6% and the coupon rate

is 7%, paid twice annually. What is the current price?

. . C 100
Using Equation 2.3.3., Mp = Ea2er + (l-i-—2
r n

c 10
We get Eam = 3.514.877. And m = 55.367. This gives a price of
r)2n
107.438.

For European bonds the true effective rate would be used, rather than the
nominal figure quoted for the US market. The answer in this case would be
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slightly lower at an initial true effective Gross rate of 6.09%, giving an answer
of 106.741. If we have the market price and need to calculate the yield (the
usual state of affairs). Equation 2.3.4 and the methods for root finding are
applicable.

Japanese bonds use a simple yield calculation rather than the US/European
method of compounding. The simple yield is given as:
C { 100—-M, 1 }

Y=—+ *—

M[, M[, n

(3.1.1)

The market price is the dirty price and coupon payments are normally twice
annually. Since market prices are usually available, the yield is easily calculated.
Japanese government bond’s have the coupon rate determined by the auction
price and are based on a face value of ¥100.00. The basic dealing unit for
purchase is ¥50,000.00.

3.3. Static Spread

The price of a corporate bond is affected by a range of factors which can
be benchmarked against the rates and returns of treasury bonds. For a given
maturity, coupon and spot rate, a corporate bond may be expected to be priced
lower than a treasury issue as a reflection of the inherently higher risk of
default.

The static spread of a bond is a reflection of the spread from the spot curve
for the entire maturity period. The static spread is therefore some measure of the
risk reflected in the bond price. Static spread differs from yield spread which
measures the difference in yields to maturity.

The price of a bond which incorporates static spread is given as:

; C 100
PZE (1+rs+r(i))i+ (1+r,+r(n)" (3.2.1)

Where r is the i period spot rate and 7, is the constant spread rate.

Example 3.3

A series of 11 period spot rates ;{2.5,2.8,3.0,3.5,3.8,4.0,4.9,5.5,6.5,7.9,8.9} are
used to provide the riskless bond price of 103.795 for an 11 period, 8% semi
annual coupon, with 100 unit par. A corporate bond with the same coupon and
maturity is offered at par. Determine the yield and static spread. Also show the
static spread for an 8% coupon based on the same spot rates and maturity, for
a range of corporate bonds selling from 2.5% below to 2.5% above par. Verify
that the static spreads do produce the correct cash flows.
Static spread for P = 100.0: 0.5405
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TABLE 3.2. Spread ranges

Price (% of PAR) Static Spread Yield Spread
97.500 0.9119 0.8643
98.000 0.8366 0.793
98.500 0.7618 0.7221
99.000 0.6875 0.6518
99.500 0.6138 0.5819

100.000 0.5405 0.5125
100.500 0.4579 0.4435
101.000 0.3884 0.375

101.500 0.3189 0.3069
102.000 0.2494 0.2393
102.500 0.1799 0.1721

Yield to Maturity for Corporate bond with price = 100.0: 8.000

Yield to Maturity of the Treasury bond with price = 103.795: 7.4876.

The yield spread is simply the difference between the yield to maturity of the
riskless bond and the yield to maturity of a corporate bond selling at par. This is
calculated as: 8.000 — 7.4876 = 0.5124% and static spread is calculated directly
by Equation 2.5.2.

The range of spot rates produces the range of spreads as shown in Table 321
The static spreads are those values which need to be added to the spot rates, to
correctly price the corporate bond. The yield spreads are the differences in yield
to maturity for the corporate bonds and the Treasury bond.

For verification that the static spreads do produce the required cash flows, the
value of all cash flows for maturity is calculated using the adjusted spot rates.
Table B3] shows a sample from the range.

Considering the first two prices: Price 1 shows the addition of 0.912 to the
original spot rate is required to make the period rates equal to the adjusted rate,
that produces the required cash flows. The table shows that the adjusted rates
will produce the required cash flows to equate the original price.

Listing B3] shows the application code for this example

package FinApps;
import static FinApps.Intr.*;
import static java.lang.Math.*;
import java.util.*;
import static FinApps.PresentValue. *;
import java.text.*;
import java.io.*;
public class Example_3_3 {
public Example_3_3() {
}

public static void main(String[] args) {
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NumberFormat formatter=NumberFormat.getNumberInstance();

formatter.setMaximumFractionDigits(4);

formatter.setMinimumFractionDigits(3);

Spread ss=new Spread() ;

double facevalue=100.0;

double terms=6.0;

double coupon=8.0;

double maturity=11.0;

int counter=0;

double[ Jtestprices={97.5,98.0,98.5,99.0,99.5,100.0,100.5,

101.0,101.5,102.0,102.5%};
double[ ] aa=new double[testprices.length];
double testspots[]={2.5,2.8,3.0,3.5,3.8,4.0,4.9,5.5,
6.5,7.9,8.9};

double sptest[ ]=new double[testspots.length];

double[ |newspot=new double[testspots.length];

double pcstat=ss.spreadsT(testspots,100.0,11,8.0,4.0);

Tyield ct= new Tyield();

double yldpc=ct.yieldEstimate(facevalue,terms, coupon,
100.0,maturity,0.06);

double yldtr=ct.yieldEstimate(facevalue,terms, coupon,
103.795,maturity,0.06);

System.out.println("Static spread for 100.0 price ==
"+formatter.format (pcstat)+" YTM for the
100 cor bond =="+formatter.format (yldpc)+"
YTM for the low risk bond ==
"+formatter.format(yldtr));

System.out.println("Static spread for P =100.0
:"+formatter.format (pcstat));

System.out.println("Yield to Maturity for Corporate Bond with
price =100.0 :"+formatter.format(yldpc));

System.out.println("Yield to Maturity of the Treasury Bond with
price =103.795 :"+formatter.format(yldtr));

aa=ss.spreadrateS(testspots,testprices,8.0,11,3.0);

sptest=ss.spreadrateT(testspots,testprices,8.0,11,2.0);

System.out.println(" Price(%of PAR) Static Spread Yield Spread");

for (double d:testprices)

{

Tyield t=new Tyield();

double yields=t.yieldEstimate(facevalue,terms,coupon,d,

maturity,0.02);
double sprd=aa[counter];
double stat=sptest[counter];

System.out.println(" "+formatter.format(d)+
" "+formatter.format(stat)+
" "+formatter.format(sprd));

counter++;

}
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);
int indx=0;
counter=0;
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System.out.println("Spot : Spread = Adjusted rate
Price Original ");

for (double f:sptest)
{
for (double d:testspots)
{

System.out.println(" "+formatter.format(d)+

" "+formatter.format (f)+
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" "+formatter.format((d+£f))+" —"+" —=");

newspot[counter]=(d+f);

counter++;

}

double newpriced=ss.spotPvannualT(newspot,8.0,2.0);
System.out.println(" "+formatter.format (newpriced)+

" "+formatter.format (testprices[indx]));

indx++;
counter=0;

}

LisTING 3.3. Application code for Example 3.3

TABLE 3.3. Verification of spread adjusted rates

Spot: Spread = Adjusted Price Original Price 1
2.500 0912 3.412 - -
2.800 0.912 3.712 - -
3.000 0912 3912 - -
3.500 0.912 4412 - -
3.800 0912 4.712 - -
4.000 0.912 4912 - -
4.900 0912 5.812 - -
5.500 0.912 6.412 - -
6.500 0.912 7.412 - -
7.900 0.912 8.812 - -
8.900 0.912 9.812 - -
97.500 97.500

2.500 0.837 3.337 - - Price 2
2.800 0.837 3.637 - -
3.000 0.837 3.837 - -
3.500 0.837 4337 - -
3.800 0.837 4.637 - -
4.000 0.837 4.837 - -
4.900 0.837 5.737 - -
5.500 0.837 6.337 - -
6.500 0.837 7.337 - -
7.900 0.837 8.737 - -
8.900 0.837 9.737
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3.4. Credit Spreads

Whereas static spread reflects the premium that is associated with the general
risk amortised over the life of the rate curve, credit spread reflects the further risk
associated with maturity length. In calculating credit spread we are concerned
with the probability of a bond issuer defaulting within a given period. A simple
method is defined which starts with the premise that the price of a corporate
bond is equal to an equivalent parameter treasury bond times the probability of
the corporate issuer remaining solvent. The probabilities are simply related to
the observed prices.

Thus, P,,,, = P, * Py, the probability of solvency is 1 — p,,, so,
1 Peor (3.4.1)
p def — P A

tres

This provides us with the single period probability of default. Subsequent or
forward probabilities are calculated by similar price ratios and are conditional
on the previous period not being in default.

The forward probability of default is:

fhep =1 ! Poar (3.4.2)
ef — 1 — —’_* ¥ .
def (1 - pde}' Ptres

Example 3.4

The following prices are available for five zero coupon bonds:
1 year 2year 3year 4year 5 year

Treasury 97 95 92 91 &9
Corporate 92 89 86 83 79

Compute the probability of default and the forward probabilities of default.
The probability of default is computed by 2.5.3

Probability of default is: 0.0515

The forward probabilities as computed by 2.5.4:

Forward probability of default: period 1: 0.0122
Forward probability of default: period 2: 0.0646
Forward probability of default: period 3: 0.0879
Forward probability of default: period 4: 0.1124

Listing 3.4] shows the application code for this example

package FinApps;

import static java.lang.Math.*;
import java.text.*;

import java.io.*;

public class Example_3_4 {
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public Example_3_4() {
}
public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);
Spread ss=new Spread();
double[ ] risky={92,89,86,83,79};
double[ ] riskless={97,95,92,91,89};
double[ Jrisk=new double[risky.length];
risk=ss.creditS(riskless,risky);
int i=0;
System.out.println("Probability of default is:
"+formatter.format(risk[i]));
for(i=1l;i<risk.length;i++)
{
System.outs.println("Forward probability of default:
period"+i+":"+formatter.format(risk[i]));

¥
}
}

LisTING 3.4. Application code for Example 3.4

The algorithm for computing the various spread measures outlined here are
implemented in the class Spread. This is shown in Listing B3

Method spreadsT take the spot rate data and a single corporate bond price.
Using the method newtraph from the abstract class NewtonRaphson the class
computes the static spread of the corporate bond using the implementation of
newtonroot. This method is overloaded for multiple corporate bonds and will
return an array of static spreads for each bond. The method spreadrateS takes the
spot rates and a corporate bond price and returns the yield spread. The method
computes the yield to maturity of the non-treasury bond price and compares
this to the YTM for the spot rates. Spot rates are used to derive a riskless
price which is the basis of the riskless YTM. Method spreadrateS uses a Tyield
object to compute the yield, this method is overloaded to compute multiple risky
(non-treasury) yields.

Spread also contains private methods spotPvannual and spotPvperiod which
calculate annual cash flows or user defined period cash flows. The method
spreadrate is used to compute the static spread for a nominal term flat spot rate.
The method creditS computes the probability of default and the forward proba-
bility of default (credit spread). Method creditS takes the risky and riskless arrays
of ordered maturity prices then produces the output array of default probabilities.

package FinApps;

import java.util.*;

import static java.lang.Math.*;
import static FinApps.PresentValue. *;
import CoreMath.NewtonRaphson;
import static FinApps.Intr.*;
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import FinApps.Tyield.*;

public class Spread extends NewtonRaphson {
private double precision=le-5;
private int iterations=20;

public Spread() //default constructor//

{
this. terms=2.0;// default twice annual coupon payments
this.dataperiod=1;//period of spot rate data
this.facevalue=100.0;//default par

}

public Spread(double frequency, int dataterms,double parvalue ) {
this.terms=frequency;
this.dataperiod=dataterms;
this.facevalue=parvalue;

}

double terms=0.0;

int dataperiod=0;

double facevalue=0.0;

double periodyield=0.0;

double nperiods=0.0;

double periodcoupon=0.0;

double price=0.0;

double[ ]spots;

double coupon=0.0;

/** Method computes spread for the annual period rates

*

* provides the static spread from the corporate bond price. The amount
by which each spot needs to be adjusted

* Assumes annual coupon rate and annual yield estimate

*/

public double spreadsT(double[ ]spotrates,double pcorp,

double maturity,double couponrate,
double estimate) {

accuracy(precision,iterations);
spots=spotrates;
price=pcorp;
coupon=couponrate;

return newtraph(estimate);
}
/**
*Calculates the yield spread for YTM of corretly priced risk
free and arbitrary priced corporatecorporate
*/
public double spreadrateS(double[ ]spotrates,double priceval,
double couponrate,double maturity,
double yieldapprox ) {
double baseyield=0.0;
double curveyield=0.0;
double spotapprox=0.0;
spots=spotrates;
coupon=couponrate;
nperiods=maturity*terms;// number of compounding periods
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if(((int)maturity*dataperiod) !=spots.length)
{System.out.println("error: spots data is not ==
to the maturity*dataperiods");

return 0.0;

}

periodyield=((yieldapprox/100.0)/terms);

periodcoupon=(coupon/(terms));

spotapprox=( ( (spots[0]+spots[ (spots.length-1)]1)/2.0)/100.0);
//first guess

spotapprox=spotapprox/terms;

price=dataperiod==1?spotPvannual (spots,coupon):
spotPvperiod(spots,coupon) ;

Tyield c=new Tyield();// create a yield object

curveyield=c.yieldEstimate(facevalue,6.0,coupon,price,
maturity, spotapprox);
price=priceval;
Tyield t=new Tyield();
baseyield=t.yieldEstimate(facevalue,6.0,coupon,price,
maturity,periodyield);
return (abs(baseyield-curveyield));// returns annualised rates

}
[ x*
*Assumes annual coupon and annual yield with years to maturity
as input parameters
*assumes coupon and yield is entered as percentage value
*/
public double[ ] spreadrateS(double[ ]spotrates,double prices[],
double couponrate,double maturity,
double yieldapprox ) {
double curveyield=0.0;
double spotapprox=0.0;
spots=spotrates;
coupon=couponrate;
double curvest=yieldapprox;
int index=0;
double spreads[ ]=new double[prices.length];
Tyield t=new Tyield();
nperiods=maturity*terms;
periodcoupon=(coupon/ (terms));
price=dataperiod==1?spotPvannual (spots,coupon):
spotPvperiod(spots,coupon) ;

curveyield=t.yieldEstimate(facevalue,6.0,coupon,price,
maturity, (curvest/100.0));

for(double p:prices) {
Tyield yld=new Tyield();
price=p;
double y=yld.yieldEstimate(facevalue,6.0,coupon,price,
maturity, (yieldapprox/100.0));
spreads[index]=(y-curveyield);
index++;
}

return spreads;
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}
public double[ ] spreadrateT(double[ ]spotrates,
double prices[],double couponrate,
double maturity,double yieldapprox ) {
spots=spotrates;
coupon=couponrate;
int index=0;
double spreads[ ]=new double[prices.length];
accuracy(precision,iterations);
periodyield=yieldapprox;
nperiods=maturity*terms;
periodcoupon=(coupon/ (terms));

for (double p:prices) {
price=p;
periodyield=( (periodyield/100.0)/terms);
periodyield=newtraph(periodyield);
spreads[index]=periodyield;
index++;
}
return spreads;
}
/**
*Method computes the PV for an array of period spots
* and the annual coupon
*periods are user defined
**/
private double spotPvperiod(double[ ]Jperiodspot,double coupon) {
double pv=0.0;
double par=0.0;
double periodcoupon=0.0;
double couponadjust=coupon/terms;
int size=0;
size=periodspot.length*(int)terms;
pv= pVonecash (periodspot,couponadjust);
par=(100.0*exp(-(double)size*log(1l.0+
(periodspot[ (periodspot.length-1)]1/100.0))));
return(pv+par);
} /** Method to compute the PV of an array of annual
spots and annual coupon with given annual frequency of compounding
* %

**/
private double spotPvannual (double[ ]periodspot,double coupon ) {
double pv=0.0;
double par=0.0;
if(terms>1.0) {
int size=0;
int compfreq=0;
int index=0;
compfreg=(int)terms;
size=periodspot.length* (int)terms;
double[ ]periodspotadj=new double[ (size)];
for (double d:periodspot) {
for (int i=0;i<compfreq;i++) {
periodspotadj[index]=d/terms;
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index++;

}
}
double couponadjust=(coupon/terms); //from an annual coupon
//to the period rate
pv=pVonecash (periodspotadj,couponadjust);
par=(100.0*exp(-(double)size*log(l.0+
(periodspotadj[ (periodspotadj.length-1)]1/100.0))));
return(pv+par);
}
else{
double couponadjust=(coupon/terms); //from an annual coupon//
//to the period rate
pv=pVonecash (periodspot,couponadjust);
par=(100.0*exp(-(double)periodspot.length*log(l.0+
(periodspot|[ (periodspot.length-1)1/100.0))))
return(pv+par);

¥

public double spotPvannualT(double[ |]periodspot,double coupon,
double terms ) {
double pv=0.0;
double par=0.0;
if(terms>1.0) {
int size=0;
int compfreqg=0;
int index=0;
compfreg=(int)terms;
size=periodspot.length*(int)terms;
double[ ]periodspotadj=new double[ (size)];
for (double d:periodspot) {
for (int i=0;i<compfreq;i++) {
periodspotadj[index]=d/terms;
index++;

}

double couponadjust=(coupon/terms); //from an annual coupon
// to the period rate
pv=pVonecash (periodspotadj,couponadjust);
par=(100.0*exp(-(double)size*log(l.0+
(periodspotadj[ (periodspotadj.length-1)]1/100.0))));
return(pv+par);
}
else {
double couponadjust=(coupon/terms); //from an annual coupon
to the period rate
pv=pVonecash (periodspot,couponadjust);
par=(100.0*exp(-(double)periodspot.length*log(l.0+
(periodspot[ (periodspot.length-1)]1/100.0))));
return(pv+par);

}
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/**Assumes period spot and the yield approximation are period rates
with period percentages
*Assumes flat rate spot for entire maturity period
*assumes the coupon is a coupon percent of par rate.
*/
public double spreadrate(double periodspot,double priceval,
double coupon,double maturity,
double yieldapprox ) {
accuracy(precision,iterations);
double baseyield=0.0;
double frequency=0.0;
price=priceval;
periods=maturity*terms;
periodcoupon=coupon;
periodyield=yieldapprox/100.0;
periodspot=periodspot/100.0;
baseyield=newtraph(periodyield);
return (abs(baseyield-periodspot)*terms*100.0);
//returns annualised spread
}
/**
*credit spread computes probability of default and forward
prob of default
*assumes corporate bond zero and treasury zero (riskless)
*/
public double[] creditS(double[ Jriskless,double[ Jrisky) {
int size=riskless.length;
double[ ]fdefault=new double[size];
double[ ]pdefault=new double[size];
pdefault[0]=(1.0-(risky[0]/riskless[0]));
fdefault[0]=pdefault[0];
for(int i=l;i<size;i++) {
fdefault[i]=(1l.0-(exp(-log(l.0-pdefault[i-1])))*
(risky[i]/riskless[i]));
pdefault[i]=(pdefault[i-1]*fdefault[i]);
}
return fdefault;
}
public double newtonroot (double spread)
{int indx=0;
double[ ] spotspreads=new double[spots.length];

for(double d:spots) {
spotspreads[indx]=(d+spread);
indx++;

}

spread=(spotPvannual (spotspreads,coupon)-price);

return spread;

}

LisTING 3.5. Computation of various spread measures
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3.5. Bond Volatility Measures

Bond volatility measures are concerned with the relationship between the price
of a bond and the various factors influencing its value. There are many co factors
in determining the pricing of a bond, the principal ones being interest rates,
coupon terms, maturity and required yield.

A typical bond exhibits a convex characteristic for price with yield. Also for
a given bond, all things being equal, the price will tend to par as maturity is
reached and for a given yield, the higher the coupon the greater will be the price.
Any tool which supports bond market participants therefore needs to deal with
coupon rates, maturity lengths and yields.

The class used for basic investigation is Volatility. This class contains general
accessor methods and methods for calculating the sensitivity of percentage price
change to interest rates (percentVolatilty) and methods for calculating price value
of a basis point (PVBP, also referred to as the dollar value of a basis point-
DVO01) and yield value of a price change. These are methods; pVbPoints and
vieldForPpoint.

The PVBP measures the change in price for a single percentage point change
in the yield (a change of 0.01%). Method pVbPoints calculates the value of a
basis point by taking the price of the security for its current yield, followed by
the price of the security plus or minus the basis point change in current yield. The
basic calculations are as in Equation 2.3.3. Method YieldForPpoint calculates the
yield value for a price change. The method uses public class Tyield to calculate
the yield values using method yieldEstimate .The yield value (YV) of a price
change is carried out by calculating the yield at the current price, followed by the
yields for plus or minus the point price change. The basic calculation is based
on Equation 2.3.4.

Percentage price change measures the sensitivity of % price changes to interest
rate changes and is given as:

2

i 2n— % 7\ 2n+1 r
2 2 (1+3) -(1+3)
PN 0]

2
(3.5.1)
Where ¢/2 is the coupon rate per semi annual period. 7 is the period yield rate.
P is the par value and 2n is the number of time periods to maturity, where n is
the number of years.
The method percentVolatilty implements 3.5.1. This method uses method
pVbPoints to calculate the PVBP. The current market price is then calculated
and used as the divisor to provide the sensitivity measure.
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The following sections deal with using class Volatility. The class is shown in
Listing B.6

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*;

import java.util.*;

import static FinApps.PresentValue.*;

public class Volatility {

public Volatility() {
this.facevalue=1000.0;
this.frequency=2.0;

}

public Volatility(double parvalue,double coupontimes) {
this.facevalue=parvalue;
this.frequency=coupontimes;

private double mktprice;
private double mktpricelow;
private double mktpricenew;
private double couponvalue;//couponvalue = par value*annual
//coupon percent/2
private double facevalue;
private double frequency;
private double pv;
private double par;
private double relativeprice;
private double relativepricelow;
private double upyield;
private double downyield;
private double newpriceup;
private double newpricedown;
private double currentyield;
private double currentpvb;
/* Accessor methods */
private void setInitialY1ldPp(double yield)
{
currentyield=yield;
}
public double getInitialPpYld()
{
return currentyield;
}
private void setPpointpriceup(double price)
{
newpriceup=price;
}
private void setPpointpricedown(double price)
{
newpricedown=price;
}
public double getPriceupPp()
{
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return newpriceup;
}
public double getPricedownPp( )
{
return newpricedown;
}
private void setdownyieldPp(double yield)
{
downyield=yield;
}
private void setupyieldPp(double yield)
{
upyield=yield;
}
public double getUpPp()
{
return upyield;
}
public double getDownPp ()
{
return downyield;
}
public double getValuePUp()
{
return (abs(getUpPp()-getInitialPpY¥1ld())/100.0);
}
public double getValuePDown ()
{
return (abs(getDownPp()-getInitialPp¥ld())/100.0);
}
private void setRelativeValue(double price)
{
relativeprice=price;
}
public double getRelativeValue()
{
return relativeprice;
}
private void setRelativeValuelow(double price)
{
relativepricelow=price;
}
public double getRelativevValuelow()
{
return relativepricelow;
}
private void setCurrentPvb(double price)
{
currentpvb=price;
}
public double getCurrentPvb()
{

return currentpvb;

83



84 3. Bonds

/* Price value of a basis point */
public void pVbPoints (double yield,double yearterm,double coupon,
double pointchange)

double yieldval;
mktprice=Bpricing(yield,yearterm,coupon);
setCurrentPvb (mktprice);
yieldval=(yield+(pointchange/100.0));// make basis point
//adjustment higher
mktpricenew=Bpricing(yieldval,yearterm,coupon);
setRelativeValue (abs (mktpricenew-mktprice));
yieldval=(yield-(pointchange/100.0));// make basis point
//adjustment lower

mktpricelow=Bpricing(yieldval,yearterm,coupon);
setRelativevValuelow(abs (mktpricelow-mktprice));

}

/* Provides basic bond pricing */

private double Bpricing(double yield,double yearterm,double coupon)

{
couponvalue=( (facevalue*coupon/100)/frequency);
pv=(couponvalue*pvancert((yield/100.0)/frequency,

(frequency*yearterm)));
par=(facevalue*(1.0/pow(l.0+(yield/100.0)/frequency,
(frequency*yearterm))));

return(pv+par);

+

public double percentVolatility(double yield,double yearterm,

double coupon,double pointchange)

{
pVbPoints(yield,yearterm,coupon,pointchange);//price value of a
//basis point
couponvalue=( (facevalue*coupon/100)/frequency);
pv=(couponvalue*pvancert((yield/100.0)/frequency,
(frequency*yearterm)));
par=(facevalue*(1.0/pow(l.0+(yield/100.0)/frequency,
(frequency*yearterm))));
mktprice=pv+par;
return( (getRelativeValue()/mktprice)*100.0);
}
/**

*Method provides yield values for a percentage point
change in par value
*Sets via accessor methods the Yield value of a point change,
the initial yield value prior to applying the point change
*/
public void yieldForPpoint (double couponpercent,double price,
double maturity,double estimate,
double pointvalue)

double couponterm=12.0/frequency;

double change=( (facevalue/100.0)*pointvalue);
setPpointpricedown (price-change);
setPpointpriceup(price+change);

Tyield CalcBond= new Tyield();
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setInitialYldPp(CalcBond.yieldEstimate (facevalue,couponterm,
couponpercent,price,maturity,estimate));
setdownyieldPp(abs((CalcBond.yieldEstimate(facevalue,
couponterm, couponpercent, getPricedownPp(),
maturity,estimate))));
setupyieldPp(abs((CalcBond.yieldEstimate(facevalue,couponterm,
couponpercent,getPriceupPp(),maturity,
estimate))));

}

LisTING 3.6. Computation of bond volatility measures

3.5.1. Price Value of a Point

The PVBP is often used to demonstrate an investor’s cash exposure to interest
rate movements it also useful in implementing trading strategies. The following
exercise demonstrates the application.

Example 3.5

Compute the cash exposure for a range of bonds with coupons of 2,5,8,9 and
10%. Show the cash exposure to the basis point change for yields of 5 and 10%
and maturities of 3,5,8,10 and 30 years. Show the difference in $ volatility for
a higher yield.

Tables B.4] and 3.3 show the output data from Example B3l The effect of
raising or reducing the yield by a single basis point is shown in columns 3 and 4.
The cash exposure is per $100 of par.

TABLE 3.4. Price value of a basis point with 5% yield

Coupon Initial Price Plus PVBP Less PVBP Maturity
2.0 $91.7378 $0.0262 $0.0262 3.0
2.0 $86.8719 $0.0404 $0.0404 5.0
2.0 $80.4175 $0.0576 $0.0577 8.0
2.0 $76.6163 $0.0669 $0.0669 10.0
2.0 $53.6370 $0.1016 $0.1019 30.0
5.0 $100.0000 $0.0275 $0.0275 3.0
5.0 $100.0000 $0.0437 $0.0438 5.0
5.0 $100.0000 $0.0652 $0.0653 8.0
5.0 $100.0000 $0.0779 $0.0780 10.0
5.0 $100.0000 $0.1544 $0.1547 30.0
8.0 $108.2622 $0.0289 $0.0289 3.0
8.0 $113.1281 $0.0471 $0.0472 5.0
8.0 $119.5825 $0.0729 $0.0729 8.0
8.0 $123.3837 $0.0889 $0.0890 10.0
8.0 $146.3630 $0.2071 $0.2076 30.0
9.0 $111.0163 $0.0294 $0.0294 3.0

(Continued)
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TABLE 3.4. (Continued)

Coupon Initial Price Plus PVBP Less PVBP Maturity
9.0 $117.5041 $0.0483 $0.0483 5.0
9.0 $126.1100 $0.0754 $0.0755 8.0
9.0 $131.1783 $0.0926 $0.0927 10.0
9.0 $161.8173 $0.2247 $0.2252 30.0

10.0 $113.7703 $0.0298 $0.0298 3.0
10.0 $121.8802 $0.0494 $0.0494 5.0
10.0 $132.6375 $0.0779 $0.0780 8.0
10.0 $138.9729 $0.0963 $0.0964 10.0
10.0 $177.2716 $0.2423 $0.2428 30.0

TABLE 3.5. Price value of a basis point with 10% yield

Coupon Initial Price Plus PVBP Less PVBP Maturity
2.0 $79.6972 $0.0221 $0.0221 3.0
2.0 $69.1131 $0.0311 $0.0311 5.0
2.0 $56.6489 $0.0387 $0.0388 8.0
2.0 $50.1512 $0.0412 $0.0412 10.0
2.0 $24.2828 $0.0311 $0.0312 30.0
5.0 $87.3108 $0.0233 $0.0234 3.0
5.0 $80.6957 $0.0339 $0.0339 5.0
5.0 $72.9056 $0.0445 $0.0446 8.0
5.0 $68.8445 $0.0491 $0.0491 10.0
5.0 $52.6768 $0.0549 $0.0550 30.0
8.0 $94.9243 $0.0246 $0.0246 3.0
8.0 $92.2783 $0.0367 $0.0367 5.0
8.0 $89.1622 $0.0503 $0.0504 8.0
8.0 $87.5378 $0.0570 $0.0571 10.0
8.0 $81.0707 $0.0787 $0.0788 30.0
9.0 $97.4622 $0.0250 $0.0250 3.0
9.0 $96.1391 $0.0377 $0.0377 5.0
9.0 $94.5811 $0.0522 $0.0523 8.0
9.0 $93.7689 $0.0596 $0.0597 10.0
9.0 $90.5354 $0.0866 $0.0868 30.0

10.0 $100.0000 $0.0254 $0.0254 3.0
10.0 $100.0000 $0.0386 $0.0386 5.0
10.0 $100.0000 $0.0542 $0.0542 8.0
10.0 $100.0000 $0.0623 $0.0623 10.0
10.0 $100.0000 $0.0946 $0.0947 30.0

The graph of Figure B] shows that the 10% yield exhibits less $ volatility

and that the 5% yield exhibits greater convexity. The application code for
Example B3 is shown in Listing B7]
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FIGURE 3.1. Convexity v Yield.

package FinApps;
import static FinApps.Intr.*;
import static java.lang.Math.*;
import java.util.*;
import static FinApps.PresentValue. *;
import java.text.*;
import java.io.*;
public class Exercise_3_5 {
/** Creates a new instance of Exercise_3_5 */
public Exercise_3_5() {
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(4);
double currentprice;
double par;

try{
PrintWriter w=new PrintWriter (new FileWriter
("c:\\Ex2_8data.txt"),true);
double[ ] coups={2.0,5.0,8.0,9.0,10.0};

double [ ] maturity={3.0,5.0,7.0,15.0,30.0};
par=100.0;

double yield=5.0;

Volatility v=new Volatility(100.0,2.0);
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System.out.println("Coupon Initial Price Plus PVBP
Less PVBP Maturity ");
while(yield<11.0) {
for (double d:coups) {
for (double f:maturity) {

v.pVbPoints(yield, f,d,1.0);
currentprice =v.getCurrentPvb();
double up=v.getRelativeValue();
double down=v.getRelativeValuelow();
w.println(f+","+formatter.format (currentprice));
System.out.println(" "+d+"

$"+formatter.format (currentprice)+" s$"+
formatter.format(v.getRelativevalue())+" s
+formatter.format(v.getRelativeValuelow())+" "+f£);//+"
"+formatter.format(v.getUpPp())+"
"+formatter.format(v.getvValuePUp())); }

}
}yield+=yield;
}w.println(" ");
w.close();

}
catch(IOException foe) {

System.out.println(foe);

}

LisTING 3.7. Application code for Example B3]

Referring to Table 3.4 with a 5% yield. The 2% coupon with 3 year maturity
has a current price of $91.7378. The PVBP with an increase of a basis point
is around 2.6 £ per $100 of par, it is the same for a decrease of a basis point.
The 2% coupon with 30 year maturity has a PVBP of 10.16 £ for an increase
in basis point and around 10.19 ¢ for a decrease in a basis point. This reflects
greater $ volatility of the longer maturity period. Comparing the first entry in
Table B3] for a 10% yield, this shows a lower $ volatility, reflecting the higher
yield. In general, the data in Table B3] will exhibit greater convexity than the
data in Table This can be seen from the graph of data taken for the 2%
coupons from both tables shown in Figure Bl The plot shows the difference in
convexity with the 2% coupon for 5% and 10% yields.

3.6. Bond Pricing Characteristics

Table shows the data for a 20 year option free bond, with a semi annual
coupon of 9%. The data consists of prices for a range of required yields. The price
column is made up from the discounted coupon cashflows and the discounted
face value (par).
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TABLE 3.6. Price yield relationship

Yield PV of coupon PV of par Price
1.000 1,627.750 819.139 2,446.889
2.000 1,477.561 671.653 2,149.214
3.000 1,346.213 551.262 1,897.475
4.000 1,230.997 452.890 1,683.887
5.000 1,129.625 372.431 1,502.056
6.000 1,040.165 306.557 1,346.722
7.000 960.978 252.572 1,213.551
8.000 890.675 208.289 1,098.964
9.000 828.071 171.929 1, 000.000

10.000 772.159 142.046 914.205

13.000 636.549 80.541 717.089

17.000 509.153 38.266 547.419

Figure B2 below shows the price yield characteristic for the data of Table 3.
The graph shows that as required yield increases, bond price decreases. Figure B3]
shows the graph of present values for the coupon payments (20 years paid semi
annually). The 40 payments have a discounted value which also decreases as
the required yield increases. The dotted line of Figure B3] shows the discounted
value of the par value, which also declines as the required yield increases.

The characteristics shown in Figures and B3] are of use in determining
the required yield for an investor in order to achieve a required series of cash
flows. The formula of Equation 2.3.3 is used to determine the price for a range
of required yields. This is shown in Listing 3.8.
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FIGURE 3.2. Data plot for Table B3
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PV/Yield curves for 20 year 9% coupon bond
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FIGURE 3.3. P.V v Required yield characteristics.

The graphs of Figures and B3 clearly show the convex characteristic
associated with a price/yield relationship. Since the relationship is non-linear,
the percentage changes in yield associated with a given price range will depend
on the relative points of the curve.

The volatility of price change with yield is reasonably symmetric for small
changes in yield and is non-symmetric for relatively large changes. Given the
curve shape it is also evident that for a given large yield change the increase in
percentage price is greater than the decrease in percentage price.

Example 3.6

For a 15 year 6% bond, paying semi annually. Show for the yield range in
Table the price percentage decline and increase with the (100) percentage
point changes. Compare the same data for 10 year and 5 year 6% coupon bonds.
Also show the effect of lower (2%) and higher (10%) coupon rates. The code is
shown in Listing

For the 10 and 5 year bonds:

Figures 3.4 and B3] below show plots of the data from Tables B.7] &

The latter part of Exercise 3.6 is shown in Table and Figure
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10 and 5 year Price/Yield curves
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FIGURE 3.4. Price/yield curves for Example
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FIGURE 3.5. Percentage changes for Example B.6
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TABLE 3.7. Price decline/increase with point changes

Yield Price Increase Decrease
2.000 1,516.154 11.786 10.544
3.000 1,360.238 11.462 10.284
4.000 1,223.965 11.134 10.018
5.000 1,104.651 10.801 9.748
6.000 1, 000.000 10.465 9.474
7.000 908.040 10.127 9.196
8.000 827.080 9.789 8.916
9.000 755.667 9.450 8.634
10.000 692.551 9.114 8.352
13.000 542.946 27.554 21.602
17.000 408.924 32.775 24.684

TaBLE 3.8. Price decline/increase for 10 and 5 year bonds

Yield Price Price Increase Increase Decrease Decrease
(10yr) (5yr) (10yr) (5yr) (10yr) (5yr)
2.000 1,360.911 1, 189.426 8.360 4.526 7.715 4.330
3.000 1,257.530 1,138.333 8.221 4.488 7.596 4.296
4.000 1,163.514 1,089.826 8.080 4.451 7.476 4.261
5.000 1,077.946 1,043.760 7.938 4.413 7.354 4.227
6.000 1, 000.000 1, 000.000 7.795 4.376 7.231 4.193
7.000 928.938 958.417 7.650 4.339 7.106 4.158
8.000 864.097 918.891 7.504 4.301 6.980 4.124
9.000 804.881 881.309 7.357 4.264 6.853 4.090
10.000 750.756 845.565 7.209 4.227 6.725 4.056
13.000 614.352 748.391 22.203 12.984 18.169 11.492
17.000 479.516 639.126 28.119 17.096 21.948 14.600

TaBLE 3.9. Effects of higher and lower coupon rates

Yield Price(2%) Price(10%)
1.000 1,138.970 2,250.732
2.000 1, 000.000 2,032.308
3.000 879.921 1, 840.554
4.000 776.035 1,671.894
5.000 686.046 1,523.257
6.000 607.991 1,392.009
7.000 540.199 1,275.881
8.000 481.239 1,172.920
9.000 429.889 1,081.444

10.000 385.102 1, 000.000

13.000 281.773 804.120

17.000 193.987 623.860
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Dollar Price volatility with coupon rate
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FIGURE 3.6. Volatility for different coupon rates.

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*;
import java.util.*;

import static FinApps.PresentValue. *;
import java.text.*;

import java.io.*;

public class Exercise2_9 {

public Exercise2_9() {
}

public static void main(String[] args) {
//Assumes par value of 1,000
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);
Volatility vol=new Volatility();
double increase;
double decrease;
double[ ] reqrdyield={1,2,3,4,5,6,7,8,9,10,13};
double[ Jyieldincrease={2,3,4,5,6,7,8,9,10,13,17};
double coupon=10;//coupon = par value*annual coupon percent/2..2%
double coupon2=50;//coupon = par value*annual coupon percent/2..10%
int i=0;
double pv;
double par;
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double pv2;

double par2;

System.out.println(" YIELD PRICE(10yr) PRICE(5yr) INCREASE(10yr)

INCREASE (5yr) DECREASE (10yr) DECREASE (5yr)");

for (double d:reqgrdyield) {
pv=(coupon*pvancert((d/100.0)/2.0,(2*10)));
par=(1000*(1.0/pow(1.0+(d/100.0)/2.0,(2%10))));
pv2=(coupon2*pvancert((d/100.0)/2.0,(2*5)));
par2=(1000*(1.0/pow(1.0+(d/100.0)/2.0,(2*5))));
double tendecrease=vol.percentVolatility(d, 10,6,

((yieldincrease[i]-d)*100.0));

double tenincrease=vol.percentVolatility(yieldincrease[i],
10,6, (-(yieldincrease[1]-d)*100.0));
double fivedecrease=vol.percentVolatility(d,5,6,
((yieldincrease[i]-d)*100.0));
double fiveincrease=vol.percentVolatility(yieldincrease[i],
5,6, (-(yieldincrease[i]-d)*100.0));

System.out.println(formatter.format(d)+"
"+formatter.format (pv+par)+"
"+formatter.format (pv2+par2)+"
"+formatter.format (tenincrease)+"
"+formatter.format(fiveincrease)+"
"+formatter.format (tendecrease)+"
"+formatter.format (fivedecrease));

i++;
}
System.out.println(" YIELD PRICE(2%) PRICE(10%)");
for (double d:reqrdyield) {

pv=(coupon*pvancert((d/100.0)/2.0,(2*15)));

par=(1000*(1.0/pow(1.0+(d/100.0)/2.0,(2*15))));

pv2=(coupon2*pvancert((d/100.0)/2.0,(2*15)));

par2=(1000*(1.0/pow(1.0+(d/100.0)/2.0,(2*15))));

double marktprice=(pv+par);

double marktprice2=(pv2+par2);

System.out.println(formatter.format(d)+"
"+formatter.format (pv+par)+"
"+formatter.format (pv2+par2));

LisTING 3.8. Code implementing Example 3.6

Yield value of a price change is another measure often used to gauge the price
volatility of a bond. This measure tracks the change in yield for a given price
change. The difference between initial and changed yields per $ change is the
‘yield value for $x’. Since US Treasury bonds and notes are quoted in 32nds, it
is common to compute the yield value for a 1/32nd price change.
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TaBLE 3.10. Yield values for 1/32

Maturity  Initial Price Yield % New Price New Yield % Value of  Coupon

1/32

1.0 95.3514739  10.0000000  95.3827239 9.9651614 0.0003484

2.0 91.1351237  10.0000000  91.1663737 9.9812917 0.0001871

3.0 87.3107698  10.0000000  87.3420198 9.9866193 0.0001338

4.0 83.8419681  10.0000000  83.8732181 9.9892452 0.0001075 5%
5.0 80.6956627  10.0000000  80.7269127 9.9907896 0.0000921

10.0 68.8444741  10.0000000  68.8757241 9.9936376 0.0000636

15.0 61.5688724  10.0000000  61.6001224 9.9943159 0.0000568
30.0 52.6767762  10.0000000  52.7080262 9.9943182 0.0000568

1.0 100.0000000  10.0000000 100.0312500 9.9663952 0.0003360
2.0 100.0000000  10.0000000 100.0312500 9.9823779 0.0001762
3.0 100.0000000  10.0000000 100.0312500 9.9876888 0.0001231
4.0 100.0000000  10.0000000 100.0312500 9.9903318 0.0000967 10%
5.0 100.0000000  10.0000000 100.0312500 9.9919076 0.0000809
10.0 100.0000000  10.0000000 100.0312500 9.9949859 0.0000501
15.0 100.0000000 9.9999999  100.0312500 9.9959352 0.0000406
30.0 100.0000000 9.9999999 100.0312500 9.9966991 0.0000330

1.0 104.6485261  10.0000000 104.6797761 9.9675446 0.0003246
2.0 108.8648763  10.0000000 108.8961263 9.9833448 0.0001666
3.0 112.6892302  10.0000000 112.7204802 9.9886000 0.0001140
4.0 116.1580319  10.0000000 116.1892819 9.9912190 0.0000878 15%
5.0 119.3043373  10.0000000 119.3355873 9.9927835 0.0000722
10.0 131.1555259  10.0000000 131.1867759 9.9958627 0.0000414
15.0 138.4311276 ~ 10.0000000 138.4623776 9.9968365 0.0000316
30.0 147.3232238  10.0000000 147.3544738 9.9976739 0.0000233

Example 3.7

Show the yield value of a 1/32 increase for US Treasury securities with coupon
rates of 5%,10% and 15%,priced to yield 10%. Compare the yield value charac-
teristics of these bonds with varying maturities. Assume the par value is $100
and coupons are semi annual.

Table shows the data for US bonds with maturities ranging from 1 to 30
years and coupon rates of 5, 10 and 15 percent. The initial price of the bond is
shown (priced to yield 10%) and the new price with a 1/32 added. The value of
a 1/32 is the difference between yields.

The yield value characteristics are shown in Figure B77] From this it can be
seen that the yield value of a 1/32 increase, decreases with maturity. This effect
is seen for all coupon rates and confirms that the $ volatility is greater for longer
maturity lengths.

The code for Example 3.7 is shown in Listing 3.9 below.
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Yield value of 1/32 with maturity length
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FIGURE 3.7. Yield value of a 1/32.

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*;
import java.util.*;

import static FinApps.PresentValue. *;
import java.text.*;

import java.io.*;
public class Exercise2_10 {

/** Creates a new instance of Exercise2_10 */
public Exercise2_10() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();

formatter.setMaximumFractionDigits(7);
formatter.setMinimumFractionDigits(7);

Volatility vol=new Volatility();
double par;

double currentprice;
double change;
double newprice;

try{

PrintWriter w=new PrintWriter (new FileWriter

("c:\\data_for_2_10.txt"),true);
double[ ] coups={5.0,10.0,15.0};

double [ ] maturity={1.0,2.0,3.0,4.0,5.0,10.0,15.0,30.0};

par=100.0;
double yield=0.1;
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Volatility v=new Volatility(par,2.0);
System.out.println("Maturity Initial Price Yield %
New Price New Yield % Value of 1/32 ");
for (double d:coups)
{w.println(d+",");
for (double f:maturity)
{
currentprice=(((pvancert(yield/2.0,£*2))*
(d/100.0%*par)/2.0)
+(par/pow( (l+yield/2.0),£*2)));
v.yieldForPpoint(d,currentprice,f,0.0950,1.0/32.0);
double up=v.getValuePUp();
double down=v.getValuePDown() ;
System.out.println(" "+£f+" "+formatter.format
(currentprice)+" "+ formatter.format(v.getInitialPpYld())+
" "+formatter.format(v.getPriceupPp())+
" "+formatter.format(v.getUpPp())+
" "+formatter.format(v.getValuePUp()));
w.println(formatter.format(v.getvaluePUp()));
}

}
w.println(" ");

w.close();

}
catch(IOException foe)
{
System.out.println(foe);
}
}
}

LisTING 3.9. Application code for Example 3.7

References
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Duration

Bonds that sell at a premium or par have increased price volatility with longer
terms to maturity. The price of a bond is partially based on the reinvestment of
coupon receipts at the quoted yield. This holds an inherent risk in not finding a
suitable investment vehicle that provides the required yield. As the maturity of
the bond increases the reinvestment risk therefore also increases.

With a drop in interest rates the price of a bond will increase so a bondholder
will see an immediate appreciation in value but since the reinvestment rate (new
yield) is now lower for the reinvestment of coupons the growth in value is slowed.
With an increase in interest rates the capital value of a bond will immediately
drop but the growth with the higher yield figure will see a more rapid increase
in value. All other things being equal there will be some investment duration for
the bondholder that equates to indifference for small changes to interest rates.
See the book by Sharpe et al for a comprehensive overview.

4.1. Macaulay Duration

The Macaulay duration (proposed by F Macaulay in 1938) is the weighted
average of the times to an asset’s cash flows. The present value of the cash
flows, divided by the asset’s price constitutes the weights.

Macaulay duration (MD) for periods is given as:

1 & tF
MD = — !
PZ

=1 (1 +y)[

(4.1.1)

Where P is the bond price and F, is the period cash flow, n the number of periods
to maturity, t the time period. For a coupon bond the MD has an addition of the
discounted face value so that the MD becomes:

tF, nV
n 1 ! 1 n
MD = thl ( —;y) + ( —;y) . Where V is the par value. (4.1.2)

99
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MD (in years) = m where k is the compounding frequency. This converts
Equation to:

1 F n Vv
RG]

k
P

(4.1.3)

The MD effectively computes the period cash flow and for each cash flow in
the maturity divides by the total discounted cash flow to weight each period as a
percentage of the total. The total period cash flow, which is of course, the bond
price, also includes accrued interest (the dirty price).

Price volatility is defined as the change in price for a change in yield, this can
be represented as:

dPrice
Price
dYield

(4.1.4)

This relationship is also expressed as the changes in cash flows so % = Equation

(4.1.5) v
From which we can derive:

MD:—(l—}-y)g (4.1.6)

ay
The equations above only hold if the variables are independent of the yield.
Re-arrangement of gives another ratio, the modified duration. Modified
Duration is expressed as:

MD P
(I+y P
P

Thus percentage price change is approximately equal to modified duration times
the yield change. The MD is seen as a useful sensitivity measure of price
volatility.

The measures derived from Macaulay’s original equations are, modified
duration, dollar duration and effective duration.

Modified duration is used to approximate the % change in price with a change
in the market yield. The dollar duration reflects the $ value for a small change
in yield.

The class Duration contains the method duration which takes the yield, years
to maturity, par price and coupon rate. The method sets the values for a range of
accessor methods; setMDyears, setMDmodyrs, setDduration and setPerchange.
The accessor methods return the Macaulay duration in years ( getMDyears), the
modified duration in years (getMDmodyrs), the dollar duration (getDolduration)
and percentage change (getPerchange). The class is shown in Listing T below.
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package FinApps;
import static FinApps.PresentValue. *;
public class Duration {

/** Creates a new instance of Duration */
public Duration() {this.frequency=2.0;

}

public Duration(double couponfreq) {
this.frequency=couponfreq;

}

private void setMDyears (double mdperiods) {
this.mdyrs=mdperiods/frequency;

}

public double getMDyears () {
return mdyrs;

}

public double getMDmodyrs() {
return modmdyrs;

}

private void setMDmodyrs (double mdyears,double discvalue) {
this.modmdyrs=mdyears/discvalue;

}

private void setDduration(double modurationyrs,double price)

{

this.dolduration=((modurationyrs*price)/led);

}
public double getDolduration()
{
return dolduration;
}
private void setPerchange(double moduration)
{
this.percentchange=-moduration;
}
public double getPerchange(double basispoints)
{
return 100* (percentchange*basispoints);
}

private double percentchange;
private double dolduration;
private double modmdyrs;
private double mdyrs;

private double frequency;

/** Requires the yield and coupon as a decimal value */
public double duration(double yield,double period,
double parprice,double coupon) {

double val=0;

Volatility v=new Volatility(parprice, frequency);

double bondprice=v.Bpricing((yield*100.0),period,
(coupon*100.0));

yield=yield/frequency;

coupon=coupon/frequency;

int n=(int) (period*frequency);
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val=(n*(pVs(yield,parprice,n)/bondprice));// face value
//discounted..
for(int i=1;i<(n+1l);i++) {
double value=( (pVw(yield, (coupon*parprice),
i))/bondprice);
val+=((pVw(yield, (coupon*parprice),i))/bondprice);
// individual period cash flows

}
setMDyears(val);
setMDmodyrs (getMDyears (), (l+yield));
setDduration(getMDmodyrs(),bondprice);
setPerchange (getMDmodyrs());

return val;

LisTING 4.1. Computation of duration

Exercise 4.0

Show the percentage price change and PVBP for a security with 6% coupon,
15 years to maturity and priced to yield 8%. Compare the percentage change
and PVBP with duration estimates for a range of yield changes from 1 to 500
basis points.

The bond price = 84.6275. Table[f]lshows the data for calculated and duration
estimates. It can be seen that the percentage price changes as measured by
volatility calculation agree reasonably with the duration estimates for base point
changes up to around 5 basis points. There is a similar agreement with the $ price
value of a basis point up to around 10 basis points. After yield increments of
around 10 basis points it can be seen that there is an increasing divergence
between direct calculation and duration based estimates of price change. The
graphs of Figures 1] and 2] show this divergence rate clearly. The application
code is shown in Listing 4.2.

TABLE 4.1. Comparison of calculated percentage change with duration estimates

Basis Points % Volatility % Duration Estimate PVBP PVBP Estimate
0.000 0.000 —0.000 0.000 0.000
1.000 0.080 —0.080 0.068 0.068
2.000 0.161 —0.161 0.136 0.136
3.000 0.241 —0.241 0.204 0.204
5.000 0.401 —0.402 0.340 0.341

10.000 0.800 —0.805 0.677 0.681
20.000 1.591 —1.609 1.346 1.362
30.000 2.372 —2.414 2.008 2.043
50.000 3.908 —4.024 3.307 3.405

100.000 7.596 —8.047 6.428 6.810

200.000 14.366 —16.094 12.157 13.620

300.000 20.412 —24.141 17.274 20.430

500.000 30.680 —40.235 25.964 34.050
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Deviation of calculated and duration estimate of % price change
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FIGURE 4.1. Deviation characteristics of percentage change for data in Table 4.1.
Figure 4.1 shows that as yields get progressively higher the duration estimate tends to
continue in a more linear fashion than the directly calculated volatility measure. The
difference between both curves show the progressive error of duration estimate of the
percentage price change.

Deviation of calculated and duration $ estimates
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FIGURE 4.2. Deviation characteristics of $ change for data in Table 4.1. Figure 4.2 shows
that the $ price value of a basis point change shows an increasing rate of error for duration
based estimates. The duration estimate is also linear and does not track the calculated
curve of $ price change with basis point increases.
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public class

Exercise_4 {

/** Creates a new instance of Exercise_4 */
public Exercise_4() {

}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);

Volatility vol=new Volatility(100.0,2.0);

Duration d=new Duration();

try{

"+formatter.
"+formatter
"+formatter
"+formatter

PrintWriter pw=new PrintWriter
(new FileWriter
("c:\\Ex_volpvbp.txt"),true);
PrintWriter w=new PrintWriter
(new FileWriter
("c:\\Ex_duration.txt"),true);
double coups=8.0;
double maturity=15;
double[] yields={0.0,0.01,0.02,0.03,0.05,0.10,0.20,0.30,
0.50,1.0,2.0,3.0,5.0};
double par=100.0;
double yield=10.0;
d.duration(yield/100.0,15,par,coups/100.0);// set values
//for the base duration calculations
System.out.println("Basis points $volatility
%duration estimate PVBP PVBP estimate ");
for (double h:yields)
{
double g=h/100.0;
double percentvol=vol.percentVolatility(yield,maturity,
coups, (h*100.0));
System.out.println(" "+formatter.format((h*100.0))+"
format (+percentvol)+"

.format (d.getPerchange(g))+"
.format (vol.getRelativevalue())+"
.format (d.getDolduration()*(h*100.0)));

w.println(formatter.format((h*100.0))+","+formatter.format
(vol.getRelativevalue())+", "+formatter.format

(d.

pw.println("

getDolduration()*(h*100.0)));
pw.println(formatter.format((h*100.0))+","+formatter.
format (percentvol)+", "+formatter.format
(abs(((d.getPerchange(q))))));

}

")i

w.println(" ");

pw.close();

}

w.close();

catch(IOException foe)
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{

System.out.println(foe);

}

LISTING 4.2. Application code for Example 4.0

The duration based estimates for an increase in basis points, at higher yields
consistently shows an over estimate in price. As yields get progressively higher
the calculated curve deviates from the duration estimates at a greater rate.

4.2. Effective Duration

When a bond cash flow is affected by yield changes the duration measures
we have looked at so far are not applicable. The Effective Duration is an
approximation method of duration that can be used to measure volatility of yield
dependant bonds.

Effective duration is calculated by taking the price of a security with small
yield changes up and down from a reference value.

The effective duration is represented as:

P~ Poy (4.2.1)
P y (y—y2)
Where P_,, is the price with yield minus a small amount (y_) and P, is the
price with an equal magnitude increase in yield (y ). P, is the price with yield
y, the reference value. )

If we examine the graphs of percentage and dollar duration in figures 4.1 and
4.2 above, it is clearly seen that the actual prices are non linear whereas the
duration estimates are linear. If we take a data set around the base value of 10%
and plot $ duration with actual price change, the relationship between duration
and actual price change can be seen. The tangent line at the base (10%) point
gives the zero change duration. The duration based estimate is linear across the
range of yield values, whereas the actual price curve is convex. The difference
between the tangent line and the actual price curve is the error of estimate, which
can be seen to be larger for greater point changes. See figure B3]

To improve on our linear estimates we need to account for convexity of the
actual price curve. Convexity in periods can be defined as:

1 9*P
P dy?

To represent the price/yield curve the convexity is given as:

(4.2.2)

|4
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Actual and Duration price for Basis point changes
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FIGURE 4.3. Actual v Duration price for change in basis points.

To convert the convexity in periods to years the transformation is given as;
convexity (periods) = convexity (years)*k?, where k is the number of periods in
a year.

For a small change in yield we have seen that the modified duration is a
reasonable first order estimate, so from % = —% we have the approximation
% ~ -duration”dy. To continue with this approximation we can extend it to a
second order Taylor series such that;

AP 9P 1 1#P1,,

~Z Ay -2 (A
P ST p )

This is equal to —duration*Ay+ % *convexity*(Ay?*). We will look at convexity
and other possible convexity corrections in later chapters where we examine
option valuation methods.
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Futures

Futures are agreements between parties to buy or sell assets at a future price.
Futures are traded on exchanges such as the Chicago Board of Trade (CBT) or
Chicago Mercantile Exchange (CME). Forward contracts are generally traded
‘over the counter’ by financial institutions or between financial institutions and
corporate organizations. There are two positions to a forward contract; the long
position agrees to buy at a future date for an agreed price and the short position
agrees to sell at the forward date for the delivery price. In a forward contract the
price is agreed which makes the forward value of the contract zero.

Although a forward contract has an initial value of zero, the value of a forward
contract will change as time progresses to maturity. If the underlying asset
decreases in price the short position stands to gain, if the asset price increases the
value will change to favour the long position. Thus the delivery price will tend
to vary from the forward price. Forward contracts are most useful in hedging
strategies.

A futures contract traded at an exchange has a set of processes that control
the cash flows of the instrument. The positions are taken through brokers to
floor traders, for each client requiring a short position, a corresponding client
requiring a long position is identified for the particular asset (say, coffee bean
delivery). A participant ‘closes out’ a position by taking an opposite trade, so
that the trade for a short in coffee beans for May delivery is closed out by taking
a long position for May delivery. Most of the futures trading is closed out and
very rarely is the underlying asset actually taken.

The underlying assets for any futures trading are very wide ranging. Typically
trading is done across commodities such as tea, coffee, wheat grain etc and
metals such as tin, copper, iron ore and nickel. The assets are well described and
well defined in terms of quality and delivery details. The amount and volume of
the asset is also related to the asset and its logical possibilities of delivery. The
value of wheat contracts for July delivery for instance are specified by the CBT
as being No 2 soft red, No 2 hard red winter wheat, No 2 dark Northern wheat
or No 1 Northern spring wheat. Quantity is specified as 5,000 bushels.

Pricing for futures contracts involve taking the ‘market’ price negotiated on
the floor of the exchange, when both positions (long and short) have takers.
The pricing methods take account of the underlying assets, so oil is priced per
barrel, treasury notes and bill futures are quoted in dollars and 32nds(CBT). Price
movements are related to the base methods, so oil futures have movements of

107



108 5. Futures

$0.01 and bond futures 1/32nd of a dollar. The limits for daily price fluctuations
on NYMEX as of early 2006 for light sweet crude oil are:

Trade basis 1,000 US barrels (42,000 gallons) per contract. Limits are, within
first two months of contract, $7.50. Thereafter the limit is $7.50. After two
months, the limit is $3.0 per barrel, rising to $6.0 per barrel if the limit has been
reached in a previous back month. There are also position limits for futures. In
the case of NYMEX oil futures the limit is 20,000 net futures but the limit is
1,000 in the last 3 days of trading in the spot month.

The futures exchange manages the contract so that default risk is minimised,
this is principally done through ‘marking to market’ the account on a daily basis.
Marking to market adjusts gains and losses of the account based on the end of
day settlement prices. The settlement price is the average of the days trading
price changes just prior to the ending of daily business.

When an investor buys a futures contract a percentage margin deposit is
required, this varies with the asset and the exchange. The contract is started
with an initial margin, set by the broker. If by the end of day the price of the
futures contract has dropped, the amount of decrease in price is deducted from
the margin account and paid to the sellers broker account, the same process
applies to price rises, in which case the buyer account is credited with the end
of day price rise. When the contract comes to an end the futures price is the
price of the last mark to market. Investors are able to withdraw funds from the ¢
margin account that is in excess of the original margin. When margins go below
a set maintenance level, the investor will be sent a ‘margin call’ to immediately
top up to the initial margin level. If an investor defaults on this margin variation,
the position is immediately closed out by the broker.

Short sellers are participants who effectively sell stock which they don’t own.
The market mechanism involves a broker taking a short order from the investor,
the asset has to be borrowed by the broker, from a client who holds the asset,
the asset is sold at the market price and the proceeds put into the short sellers
account. When the position is closed out, the broker purchases the asset at the
market price and replaces the asset to the lending client. The cost of purchase is
deducted from the short sellers account. The short seller makes profit if the stock
prices declines and a loss if it rises, however there are also considerations of cash
flows from the asset, such as dividend payments or coupon receipts. The short
seller has to make good interim cash flows that would have been paid from the
asset even though the cash flows are not available to the short seller (the asset
has been immediately sold). An excellent overview is given in the book by Hull.

5.1. Forward & Futures Pricing

Forward contracts can be broadly classified as being one of three types:

1. The security pays no income, e.g. a zero coupon bond.
2. The asset provides known cash income, e.g. any dividend paying stock.
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3. An underlying security which pays a known dividend yield, e.g. a coupon
bearing bond.

1. Forward price where the underlying asset pays no income.

For a forward contract with time 7 to maturity and current time ¢ in years, with
T = (T —t) being the time remaining in the forward contract and r the risk free
rate of interest. The forward price F at time ¢ is given as

F=Se" (5.1.1)

Where S is the spot price of an asset.
The forward value f of a contract that pays no income is given as:

f=8—ke" (5.1.2)

Where K is the delivery price (K = F on contract initiation). The value of
f is initially 0. As time passes both the forward value and the forward price
will change.

To eliminate arbitrage opportunities, the relationship shown in 5.1.1 must
hold. If F < Se’™ then we can short sell the asset, go long the contract, invest
the income from short selling(S) for 7 at r rate of interest for a value of Se™.At
maturity we can pay the long contract delivery price (which is the forward price).
The arbitrage profit is therefore Se’” — F. A similar argument holds for F > Se'".
In this case there is an arbitrage opportunity for the investor to borrow funds at
the risk free rate and buy the asset, go short the contract and at maturity sell
the asset for F to close the short position. The asset was purchased for Se’”,
therefore the profit is F — Se'”.

Example 5.0

A forward contract on a non income stock has a maturity of 5 months. The risk
free interest rate is 5% and the spot price is quoted as $900.80. Calculate the
forward price for delivery. Show the forward value of going long this contract,
month by month to maturity. If immediately on purchase the spot price rises
to $910.80. Show the effect this has on the month by month long position to
maturity.

Using 5.1.1, the forward price is computed as $919.7628.

Using 5.1.2, the forward values are shown in Figure 5.1l below. The forward
value is —18.9628, with zero elapsed time, rising to zero forward value as
the months elapse to maturity. Showing that the spot price is equal to the
delivery price, discounted continuously for the 5 months period at the 5%
interest rate.

The effect of an immediate price rise is shown in Figure below. This
shows that at around 0.22 years the forward value is zero. This is the point at
which the delivery price (919.7628) discounted at 5% is equal to the new price.
By closing the contract up to the zero value the opportunity exists to take the
forward value as profit
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FIGURE 5.1. Long forward contract.
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FIGURE 5.2. Long forward value with spot price change.




5.1. Forward & Futures Pricing
Listing 5.1l gives the example code

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*;
import java.util.*;

import static FinApps.PresentValue. *;
import static FinApps.Forwards.*;
import java.text.*;

import java.io.*;

public class Example_5_0 {

public Example_5_0() {
}

public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);
double forprice;
double monthvalue=0.08333;
double currentime=0.0;
double delprice=delpriceNoinc(900.80,0.41665,0.05);
double delpricenew=delpriceNoinc(910.80,0.41665,0.05);

forprice=fpriceNoinc(900.80,0.41665,0.41665,919.7628,0.05);

try{
PrintWriter pw=new PrintWriter (new FileWriter("c:\\
example5_la.txt"),true);
PrintWriter w=new PrintWriter (new FileWriter("c:\\
example5_1b.txt"),true);

System.out.println("Delivery Price == "+formatter.
format (delprice));
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System.out.println("Delivery Price NEW == "+formatter.format

(delpricenew));
for(int i=0;i<6;i++) {
forprice=fpriceNoinc(900.80,0.41665,currentime,
delprice,0.05);

System.out.println("Forward Value == "+formatter.format

(forprice));

pw.println(formatter.format(forprice)+","+formatter.format

(currentime));
currentime+=monthvalue;
}
System.out.println("Delivery Price == "+formatter.format
(delprice));
for(int i=0;i<6;i++) {
forprice=fpriceNoinc(910.80,0.41665,currentime,
delprice,0.05);

System.out.println("Forward Value == "+formatter.format

(forprice));

w.println(formatter.format (forprice)+","+formatter.format

(currentime));
currentime+=monthvalue;
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w.println(" ");
//pw.close();
w.close();

} catch(IOException foe) {
System.out.println(foe);
}

LisTING 5.1. Application code for Example 5.0

5.2. Forward Price

Where an asset pays a predictable income (such as coupon bearing bonds)
the present value of the known income streams has to be factored in. For the
elimination of arbitrage opportunities the relationship between the forward price
and spot price has to be:

F=(S—Ie" (5.2.1)

If F< (S—1)e", the possibility exists for the investor to short the asset and
invest the income for 7 at the risk free interest rate. By taking out a long contract
for F and on maturity buying the asset (at F ), the short position is closed for
a profit of (S —1I)e"™ — F. Similarly if F> (S—1)e" , the opportunity exists to
borrow S for r interest and T years, buy the asset and short the forward contract
for F. On maturity the short position is closed by selling the asset for an arbitrage
profit of F — (S —1)e'".
The value of a forward contract paying predictable income is:

f=E—-D—Ke" (5.2.2)

Where I , is the present value of the income stream from the asset and K is the
delivery price.

Example 5.1

A security with 10 months to maturity and spot price of € 60.50 has a dividend
of € 0.50 payable every three months. Assuming a flat rate of 6%, calculate the
forward delivery price. If the security is offered at a delivery price of € 61.0.
Would there be an arbitrage opportunity for going short or long the forward?
Using 5.2.1, the series of cash flows are:

I=0 506—0.06*3(0.08333) +0 506—0.06*6(0.08333) +0 506—0.06*9(0.08333)
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The income cash flows are: 0.4925, 0.4852, and 0.4779. The sum is 1.455.
The forward price F is (60.50 — 1.455)06"100:08333) — 62 (0702,
The forward value for a delivery price of € 61.0 is given by:

f =60.50 — 1.455 — 61.0¢~0-06710(0:08333)

This is 1.0181. The present value of the delivery price is 58.0261.There is therefore
an arbitrage opportunity to short the stock and go long the forward contract.

The general formulae of 5.2.1 and 5.2.2 are applicable to non flat interest
rates. For example, if we have a 9 months forward contract, for a € 37.50 stock,
that pays a dividend of € 2.0 every two months. The forward price is given as:

(37.50 = 2.0 0-05°2(0.08333) _ 5 (7,~0.054°4(0.08333) _ 5 (7,~0.573°6(0.08333)

_9 06—0461*8(0408333))er97
The application code for this example is shown below in Listing

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*;
import static FinApps.PresentValue. *;
import static FinApps.Forwards.*;
import java.text.*;

public class Example6_2 {

public Example6_2() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();

formatter.setMaximumFractionDigits(4);

formatter.setMinimumFractionDigits(3);

double forprice=fpriceInc(60.50,0.833,0.0,0.06,3.0,0.50);

System.out.println("Forward price for income bearing security =
"+formatter.

format (forprice));

double forvalue=fvalueInc(60.50,0.833,0.0,0.06,3.0,0.50,61.0);

System.out.println("Forward value for income bearing security =
"+formatter.format (forvalue));

LisTING 5.2. Application code for Example 5.1

Example 5.2

A 7 year bond with a price of £800.0 paying a semi annual coupon of 6% has a
delivery price of £815.0 with a one year maturity. The continuously compounded
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period interest rates are 6.5% and 7.0%, respectively. Compute the value of a
forward long position.
The period income stream has a value of; I = 24.0¢700"05 4 24 =006
The period cash flows are 23.232 and 22.377 giving 45.609. The forward
value is:

800.0 —45.609 — 815.0¢ %7 = —5.511.

The value of taking a forward long position is —5.511 the value of a short
position is +5.511.

Forward price and value, where the underlying asset pays a continuous
dividend yield.

A stock paying a continuous dividend is one where the income is a defined
percentage of the stock price. The dividend is assumed to be paid continuously
throughout the period of the contract. If we assume that the rate g is 8% and the
price in period one is 100 units, the dividend is 0.08*100. If the price is adjusted
in subsequent periods the dividend is adjusted accordingly. So, if the next period
price of the stock is 105 units, the dividend becomes 0.08*104.0. The forward
price of a contract with a known dividend yield is:

F = Se=97 (5.2.3)
The forward value of a contract with known dividend yield is given as:

f=Se " —Ke™ " (5.2.4)

Example 5.3

A 6 months forward contract on an asset paying a continuous dividend yield
of 5.0% per annum and a spot price of $29.50 has a delivery price of $31.0.
Assuming the risk free interest rate is 10.5%. What are the forward price and
the value of a long position on the contract?

Using 5.2.3 the forward price is:

F =29.50¢(0-105-00905 — 30 32250,
Using 5.1.6 the forward value is:
f=(29.50¢" 0509 —31.0e*105°09) = —0.64284.

The value of going long is —$0.64284. The forward price is $30.32250.
The example application code is shown in Listing 5.3

package FinApps;
Import static FinApps.Intr.*;
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import static java.lang.Math.*;
import java.util.*;

import static FinApps.PresentValue. *;
import java.text.*;

import java.io.*;

import static FinApps.Forwards.*;
public class Example5_4 {

public Example5_4() {
public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);
double forprice=fpricebDyld(29.50,0.50,0.0,0.105,0.05);
double forvalue=fvalueDyld(29.50,0.50,0.0,0.105,0.05,31.0);
System.out.println(" Long value == "+(formatter.format
(forvalue) )+"
Forward price : "+(formatter.format (forprice)));
}
}.

LisTING 5.3. Application code for Example 5.3

5.3. Pricing On Different Markets

The arguments posed for prices and values of forward contracts are applicable
to futures contracts only when the interest rates are non stochastic. Recall that
in futures, marking to market involves the contract being effectively re written
at the close of each day’s business; this isn’t the case for forward contracts.
When the interest rates are not constant the differences will matter for long term
interest rate sensitive stock. The futures markets are broadly based on stock,
stock index, currencies and commodities.

5.3.1. Stock Index

Stock indices track a virtual portfolio of stock. The weighting given to an
individual stock is in proportion to the percentage investment in that stock.
Stocks can vary over time with the relative percentage of the portfolio. The
index movement is normally related to the total volume of the price changes.

Stock index futures were first traded at the Kansas City Board of Trade as
the ‘value line index futures’. Index futures are traded on a worldwide basis
on numerous exchanges. The most prominent are the US markets with the S&P
500, DJIA, NASDAQ, and NYSE. For Europe there is the FTSE 100, CAC 40,
DAX etc’ and the NIKKEI 225 in Tokyo and Hang Seng in Hong Kong.

The S&P 500 is traded on the CME and is made up from 500 of the prime
stocks on the exchange. The fluctuation of the index is measured in ticks, with
one tick being equal to 0.05 points. Each tick is traded at $25.0. Each contract
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for the S&P 500 is traded at a minimum of $500 times the index. The DIJIA
is traded on the CBT for $10.0 times the index, the NIKKEI is traded at $5.0
times the index on the CME. Note that the NIKKEI is quoted in Yen, not USS$.
This means that the equations relating to arbitrage opportunities do not apply,
as there are no securities in multiples of $5 times the index.

An index future can be regarded as dividend paying securities, with the security
being the portfolio of stocks making up the index and the dividend being the
dividends due to a holder of the stocks. Since the basket of stocks that make up
an index are representative of all the major market participants, dividends can
be assumed continuous.

By assuming that g is the annual average dividend throughout the contract’s
life the futures price is:

F = Se=97 (5.3.1)

This is the same as the forward price with a known dividend yield. The value
of ¢ is the yield from all of the aggregated stocks. If the yield values are not
immediately obvious or there is a degree of variation not acceptable, then the $
dividend payable during the life of the contract can be used. If the $ dividend is
used then the appropriate futures contract price is:

F=(S—De" (5.3.2)

This is the same as the forward price with known cash income.

Example 5.4

The S&P 500 equity index is at 1103.30. The underlying stocks currently provide
a dividend yield of 3.3%. The risk free interest rate is 4.2%. What is the futures
price for a 3 months contract?

S =1103.30,r=0.042, g =0.033, = 0.25.

Using 5.1.7. The futures price is:

F = 1103.30¢(0:042-00330.25 — 1105.7852. The application code is shown in
Listing 5.4

package FinApps;

import static FinApps.Intr.*;

import static java.lang.Math.*; import static FinApps.PresentValue.*;
import static FinApps.Forwards.*;

import java.text.*;

public class Example_5_5 {
public Example_5_5() {
}
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public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);

double futureprice=fpriceDyld(1103.30,0.25,0.0,0.042,0.033);
System.out.println("Futures price for the index = "+formatter.
format (futureprice));

}
LisTING 5.4. Application code for Example 5.4

Index Arbitrage

For the case of F> Se~97 an investor could buy the stocks which make up the
index and short sell futures contracts. For the case of F < Se~97 an investor
could short the stocks and go long the futures contracts. It is not always necessary
to trade the whole of the stock portfolio making up a particular index. An
index such as the NYSE composite can be reasonably approximated by taking
a representative sub set, since the index is constructed from all of the listed
stock.

5.3.2. Currencies

If S denotes the foreign exchange rate and K denotes the agreed forward delivery
price, with r, the foreign, risk free rate of interest and r the domestic risk free
rate. The forward value of a futures contract can be computed in an analogous
way to a futures contract with known dividend yield as:

f=Se " —Ke " (5.3.3)

The dividend yield is approximated by r, since the $ value is related to the
proportion of the underlying foreign currency holding.

The forward price of a futures contract on foreign currency (also known as
the equation of interest rate parity) is given as:

F =Se 7 (5.3.4)

Currency futures are quoted in the financial press and are generally laid
out as in Table B.1] below, the prices are quoted as $ value for the equiv-
alent foreign currency. Thus, the rates show that the $- £ futures price for
December is 1.7732 US $. If we look at the Euro futures prices we can
see that the $-€ futures for March is 0.0002 cents lower than for December,
thus suggesting that short term US rates are around 0.08% lower than the
Euro risk free rates. It is worth noting that forward rates and spot rates
for currencies are normally reported as the foreign currency amounts per $.
So, a forward quote or spot price of $1.7830 would be a futures quote of
56.08 £.
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TABLE 5.1. Currency Futures CME

Sep 20 2004.
Open Sett Change High Low Est vol.  Open Intr
$-Can $ DEC 0.7692  0.7714  +0.0018  0.7729  0.7666 15,069 77,535
$-Euro € DEC 1.2170  1.2162 —0.0012  1.2173  1.2118 38,729 84,028
$-EURO € MAR  1.2120 1.2160 —0.0012  1.2168 1.2118 4 742
$-STER £ DEC 1.7797  1.7732  —0.0075 1.7810  1.7693 8,783 46,164
Example 5.5

If the current $-£ exchange rate is $1.7830 and UK repo rate is 4.75%, the US
rate 1.50%. Compute the 3 months future price.

In this case § = 1.7830, r = 0.015, g = 0.0475. The futures price is therefore
1.7686. The application code is shown in Listing 5.3

package FinApps;
import static FinApps.Forwards. *;
import java.text.*;
public class Example_5_10 {
public Example_5_10() {
}
public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);
double futureprice=fpriceDyld(1.7830,0.25,0.0,0.015,0.0475);
System.out.println("Futures price for the currency = "+formatter.
format (futureprice));

}

LiIsTING 5.5. Application code for Example 5.5

5.4. Commodity Futures

Commodities come in two varieties, those that are for consumption and those
for investment. We can use arbitrage arguments to derive the futures price for
investment commodities, but the arbitrage arguments will only provide bounds
for deriving the futures price for consumable commodities.

If we ignore the cost of storage, the futures price for an investment commodity
is: F = Se’". This is the same as the forward price for an asset paying no
income. If we do need to consider storage costs, there are two alternative ways
of accounting for them. Firstly, we can consider the present value of the storage
costs, in which case the futures price can be represented as a forward contract
with a predictable income. Secondly, the storage costs can be considered as a
proportion of the spot price, in which case the future price can be computed as
a forward contract where the asset pays a continuous yield.



5.4. Commodity Futures 119

For an investment commodity, where U represents the present value of the costs
of storage and u represents the cost of storage as a proportion of the spot price. The
following formula can be used to compute the futures commodity contracts:

1 For no storage costs

F=S8e" (5.4.1)

2 Where storage costs are reasonably represented by the PV of storage costs
throughout the life of the contract

F=(S4+U)e" (5.4.2)

3 If storage costs are determined by a proportion of the commodity price

F = Ser 7 (5.4.3)

Precious metals are a good example of a commodity group that is used primarily
for investment.

Example 5.6

A 1 year futures contract for platinum has a spot price of $843.0 per oz. the
storage cost per year is $6.80 per oz. The risk free rate of interest is 1.5%. What
is the futures price for this commodity?

In this case we have a forward price with known income:

S =843.0, r =0.015, 7 = 1.0, U = 6.80e %9510 The futures price is
$862.540. The example code is shown in Listing 5.6

package FinApps;

import static FinApps.Forwards.*;
import java.text.*;

public class Example_6_11 {

public Example_6_11() {

}

public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);
double futuresprice=fpriceInc(843.0,1.0,0.0,0.015,12.0,-6.80);
System.out.println("Futures price for Commodity = "+futuresprice);

}

}

LISTING 5.6. Application code for Example 5.6
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For a futures commodity which is also consumable (e.g. Oil, cattle, etc’)
the owners of the asset have an interest in its value for consumption. The
usual arbitrage arguments have limited applicability. If the formula of 5.4.2, is
examined for an arbitrage opportunity, when the futures price is either greater
than or less than the PV of the spot and cost of storage prices. We will see that
the equations do not hold. For the case of

F> (S+U)e” (5.4.4)

The investor can borrow the sum (S + U) at the risk free rate, buy the asset
for § and store it for 7 at a price U. The investor can then short a futures
contract on the asset. The overall effect is that the investor will obtain a profit
of F—(S+ U)e'™. If this state of affairs continues for any appreciable time,
the spot price will rise in the market and the futures price will equate to the
equilibrium state.

In the case of

F<(S+U)e™ (5.4.5)

Some investors who own the asset will find it profitable to buy the futures
contract for F, with cash from the sale of the underlying asset that has been
invested at the risk free rate. This avoids the cost of storage for 7. This strategy
is time limited in that the price will fall on the market and the equation will tend
to equilibrium.

The investor in a consumable commodity will not be willing to sell the
inventory (it has an intrinsic value in being consumed) so 5.4.5 provides an
upper bound on the futures price of a consumable commodity as:

F<(S+U)e™ (5.4.6)
If the cost of storage is a proportion of the spot price, the futures price is defined
as:

F < Selrtw7 (5.4.7)

If the futures price F < SeU+¥7 holds, the implication is that a futures contract
does not have a value sufficient to cancel the convenience value of holding the
commodity in inventory. If we know the $ cost of storage (U), the convenience
yield y is defined as that yield which satisfies:

Fe'" =(S+U)e™ (5.4.8)

If the cost of storage is a proportion of the spot price (u), then the convenience
yield is given as:

F = Seltu=r (5.4.9)
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Since the convenience yield reflects the desirability to have the underlying asset
in inventory, it can be viewed as a measure of the market’s perception of relative
shortage of the commodity in the future. The increasing likelihood of a shortage
within the contract duration, the greater will be the value of y.

The relationship between spot and futures prices is largely determined by
the cost of carry. The carrying cost is the storage cost plus the interest cost of
holding the asset minus the revenue earned from the asset. The carrying charge
is given as:

C=1+U-D (5.4.10)

Where [ is the interest cost, D is the cash flows from the asset and U is the
storage cost. The convenience yield has a dollar representation as:

$Y=S+C—F (5.4.11)

The theoretical basis, defined as the spot price minus the futures price, is therefore
Y — C. For a stock which pays no dividend there is no storage cost and no cash
flows from the stock, therefore the cost of carry is 7. For stock that earns an income
the cost of carry is r — g since there is a cash flow from the asset. In the case
of stock index futures the value of ¢ is determined by the continuous flow of
dividend revenue from underlying stock. For currency futures the cost of carry
is r — ry, for stock that has associated storage costs the carrying charge is r + u.
Listing[B. 7 shows the class Forwards. This class provides methods to compute
the functions described above. Each method has a brief description in the listing.

package FinApps;

import static java.lang.Math.*;
import static FinApps.Intr.*;

import static FinApps.PresentValue.*;
public final class Forwards {

public Forwards () {
}

/** method to return the dollar intersest value coefficint
for the term of a repo rate
*@param term is the term in years (as decimal) greater than 1 day
*@param reporate the current bank base rate/ federal funds rate
*/

public static double dollarIntr(double term,double reporate) {

return reporate*(term/360.0);

}

/** method to return the delivery price of a new forward contract
*@param spotprice is the spot price of the underlying asset
*@param maturity is the time (in years as a decimal) to maturity

of the contract
*@param currentime is the start time of the new contract
*/
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public static double delpriceNoinc(double spotprice,double
maturity, double reporate) {
return(spotprice*conintr(reporate,maturity));
}
public static double fpriceNoinc(double spotprice,double maturity,
double currentime,double deliveryprice,double reporate) {
return(spotprice-(pVcont (reporate, (maturity-currentime),
deliveryprice)));

}
public static double fpriceInc(double spotprice,double maturity,

double currentime,double reporate,double period,double dividend) {
double income=0.0;
income= maturity==1.0 ?pVcont (reporate,1.0,dividend):0.0;
//last value
double 1imit=0.0;

limit=(maturity-currentime);//Assumes that later start times
//will floor the pv of dividend payments
double time =(period/12.0);
double increment=time;
while(time<limit) {
income+=pVcont (reporate,time,dividend);

time=time+increment;

return( (spotprice-income)* (conintr (reporate,
(maturity-currentime))));

}

public static double fpricelInc(double spotprice,double maturity,
double currentime,
double[ ] reporate,double period,double dividend) {
double income=0.0;
double 1imit=0.0;
double forwardprice=0.0;
limit=(maturity-currentime);//Assumes that later start times
will floor the
pv of dividend payments
double time =(period/12.0);
double increment=time;
for (double r:reporate) {
income+=pVcont (r,time,dividend);
time=time+increment;

}
return( (spotprice-income)* (conintr (reporate[ (reporate.
length-1)], (maturity-currentime))));
}

public static double fvaluelInc(double spotprice,double
maturity,double
currentime,double reporate,double period,double dividend,double
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deliveryprice) {
double income=0.0;
income= maturity==1.0 ?pVcont (reporate,1.0,dividend):
0.0;//last value
double 1imit=0.0;

limit=(maturity-currentime);//Assumes that later start
times will floor the
pv of dividend payments
double time =(period/12.0);
double increment=time;
while(time<limit) {
income+=pVcont (reporate,time,dividend);

time=time+increment;

}

return ((spotprice-income)-(deliveryprice*pVcont
(reporate, (maturity-currentime))));

}

public static double fvalueInc(double spotprice,double
maturity,double currentime,double[ ] reporate,double period,
double dividend,double deliveryprice) {
double income=0.0;
double forwardprice=0.0;
double time =(period/12.0);
double increment=time;
for (double r:reporate) {
income+=pVcont (r,time,dividend);
time=time+increment;

}

return (spotprice-(income+(deliveryprice*pVcont (reporate
[ (reporate.length-1)], (maturity-currentime)))));
}

// Also parity rate calculation

public static double fvaluegen(double fprice,double
delivprice,double maturity,
double currentime,double reporate)

{

return ( (fprice-delivprice)*pVcont (reporate,
(maturity-currentime)));
}
public static double fpriceDyld(double spotprice,
double maturity,double
currentime,double reporate,double dividendyld) {
return (spotprice*conintr((reporate-dividendyld),
(maturity-currentime)));
}
public static double fvalueDyld(double spotprice,double
maturity,double currentime,double reporate,double dividendyld,
double deliveryprice)

123
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{

return ( (fpriceDyld(spotprice,maturity,currentime,
reporate,dividendyld)- (deliveryprice))*pVcont (reporate,
(maturity-currentime)));
}
}

LisTING 5.7. Computation of futures calculations

References
Hull J. C. (2006). Options, Futures and Other Derivatives 6th edition. Prentice Hall.



Options

An option grants the holder a right to buy or sell an asset. The value of an option
is dependent on the underlying asset value. Because of the indirect derivation
of an option’s value, options are also referred to as derivatives. A call option is
the right to buy an asset for a certain price; a put option is the right to sell an
underlying asset at a given price. The price at which a call option is exercised
is the strike price. An option gives the holder a choice of exercising the offer,
there is no compulsion for the holder to exercise the selling or buying right.

An option can be traded on any asset type. There can be options on a range
of almost limitless underlying ‘assets’; oil, wheat, fruit juice, interest rates or
weather forecasts. Options have a lifetime, for European options the option can
only be exercised at the end of its life, for American options the product can be
exercised at any time during its life. If an option is embedded it has to be traded
with its base asset.

Options are issued by a writer, to own the option a premium is paid to the
writer, at exercise an owner (holder) pays the writer a strike price and the option
ceases. When a put is exercised the writer pays a strike price to the holder
in exchange for the asset and the option ceases. One can take a long or short
position in a derivative.

6.1. Option Types

Exchange Traded Options

Options are traded worldwide on international exchanges. Prior to 1973 options
were traded as ‘over the counter’ (OTC). OTC trading is between organisations
who trade directly with each other for highly customised products in areas such
as currency and interest rates. Exchange based option trading began with the
Chicago Board Options Exchange (CBOE), exchanges worldwide now deal with
the options market. Broadly the assets being traded for options contracts include
stock, index, foreign currencies and futures.

Stock Markets

Stock options are very actively traded at the CBOE the Philadelphia Exchange
(PHLX), NYSE and AMEX in the USA. The London International and Financial

125



126 6. Options

Futures Exchange (LIFFE) for the UK. Amongst the most popular traded stocks
(for the period 4th April 2005) was American International Group (AIG) at a
volume of 22656, Semiconductor Mutual Holdings (SMH) with a volume of
20695 and Siebel Systems with a volume of 16578. A single contract gives the
right to buy or sell 100 shares of the stock at the set strike price.

Index Markets

There are a very wide range of index option products available through many
exchanges. The two most popular index options in the USA are the S&P500
and S&P100. The S&P500 is a European option, the S&P100 is American. The
Philadelphia (PHLX), trading options on the NASDAQ index offer two products:
Full size (trading symbol QCX) and mini (trading symbol QCE). The QCX
product has an index multiplier of $100.00; the QCE has a multiplier of $10.00.
Premium quotes for the QCX are 1 point = $100.00 and has a trading limit of
50,000 contracts on same side with a maximum of 30,000 in near-term month.
The QCE has a premium quote of 1 point = $10.00 with a limit of 500,000
contracts and no more than 300,000 in a near-term month. Hedge exceptions are
allowed. There is a minimum change in premium allowed for a change under 3
of $5.00 for QCX and $0.50 for QCE. For a change greater than 3. The minimum
change is $10.00 for QCX and $1.00 for QCE.

As an example of index settlement, the PHLX QCX product has a strike price
of $1900.00. The index at settlement date has a value of 1950. The writer has
therefore to pay 1950 — 1900 = 50*$100.00 = $5000. This amount is paid rather
than delivering the underlying share index!

Foreign Currency Markets

A major player in the US foreign currency options market is PHLX. The size of
a single contract is dependent on the currency being traded. Examples are:

Australian dollar AUS$ $50,000 = 1 contract
UK Sterling £ £31,250 = 1 contract

Euro € €62,500 = 1 contract

Japanese Yen ¥ ¥6.25M = 1 contract.

Futures Option Markets

Futures options are traded extensively, the popular exchanges are LIFFE in the
UK and CBOT in the US. Futures options use a futures contract as the underlying
asset. The options contract is usually chosen to settle just prior to the options
contract maturity date. A put option on a futures contract when exercised entitles
the holder to a short position in the contract and an amount equal to the strike
price minus the futures price. The holder of a call option is given a long position
in the underlying futures contract plus cash equal to the futures price minus the
strike price. The futures contracts have zero value (both long and short positions).
The futures products encompass the whole range applicable to standard futures
trading.
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6.2. Option Specifications

Stock Options

A stock option is an American option which conveys the right of the holder (but
not the obligation) to buy or sell the underlying stock at a specified price on or
prior to a given expiration date. The seller of an option is obligated to buy or
sell the underlying asset to the option buyer at the specified price if required.

Strike Price

The strike price of a stock option is the share price at which the underlying
shares will be bought or sold if the option is exercised by the holder against
the option writer (seller). Strike prices are listed in increments of 2!/2, 5 or 10
points, dependent on the underlying market price. Only a few levels around the
current market price are traded. A given option is traded with expiration on
one of four dates. The closing exchange traded option prices (premiums) are
published daily; the option prices for the day are set by active floor trading.

The exercise price (strike price) is the specified share price at which stock
can be bought or sold by the option holder. The strike price is initially set at the
level near to the current share price. Subsequent strike prices are set at intervals.
Where the initial strike price is below $25.00, the additional interval is 23 points,
where the initial price is above $25.00 and up to $200.00, the interval is 5 points.
Any initial price over $200.00 attracts a 10 point interval. New strike prices are
set when the stock rises to the highest strike price already set or falls to the
lowest strike price. As an example XYZ Corporation has a strike price of 13.00,
the traded options have strike prices of 11.00, 13'/2, 16.00, 18!/? and 21.00.

The strike price is a fixed option specification unlike the premium which is
the daily fluctuating trade price. The option premium price is the price a buyer
pays to have the right of exercise. The premium is paid to the option writer. In
return for the premium the writer of a call agrees to deliver the underlying asset
in return for the strike price. The writer of a put option is obliged to take delivery
of the underlying stock at the specified strike price if the right is exercised by the
put option holder. Premiums are retained by the writer whether or not the options
are exercised. Premiums are quoted per share so a premium of 7/4 equates to a
price of $87.50 per option contract (0.875*100 shares).

Expiration Process

Stock options are traded around eight months prior to expiration. A defining
feature of the option is the date of expiration. Thus a January call on GM is a call
option on General Motors which has an expiry date in January. The final day of
trading for an option is the third Friday of the expiration month. Stock options
trade on a cyclical basis, trading either on a January, February or March cycle.
Each cycle has four expiration dates as shown in Table below. For a stock
with a January call, this means an option call with a January expiration date. The
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TABLE 6.1. Expiration cycles.

January Cycle February Cycle March Cycle
Current Month Current Month Current Month
Months Months Months
Jan Jan Feb Apr Jul Jan Jan Feb May Aug Jan Jan Feb Mar Jun
Feb Feb Mar Apr Jul Feb Feb Mar May Aug Feb Feb Mar Jun Sep
Mar Mar Apr Jul Oct Mar Mar Apr May Aug Mar Mar Apr Jun Sep
Apr Apr May Jul Oct Apr Apr May Aug Nov Apr Apr May Jun Sep
May May Jun Jul Oct May May Jun Aug Nov May May Jun Sep Dec
Jun Jun Jul Oct Jan Jun Jun Jul Aug Nov Jun Jun Jul Sep Dec
Jul Jul Aug Oct Jan Jul Jul Aug Nov Feb Jul Jul Aug Sep Dec
Aug Aug Sep Oct Jan Aug Aug Sep Nov Feb Aug Aug Sep Dec Mar
Sep Sep Oct Jan Apr Sep Sep Oct Nov Feb Sep Sep Oct Dec Mar
Oct Oct Nov Jan Apr Oct Oct Nov Feb May Oct Oct Nov Dec Mar
Nov Nov Dec Jan Apr Nov Nov Dec Feb May Nov Nov Dec Mar Jun
Dec Dec Jan Apr Jul Dec Dec Jan Feb May Dec Dec Jan Mar Jun

January cycle has January, April, July and October. The February cycle has the
months February, May, August and November. March has a sequence of March,
June, September and December. While the expiration date for the current month
has not been reached, the current month cycle is used. Once the current month
expiration date has passed the following options will trade with the next month,
next but one month and the next two months in sequence.

6.3. Pricing Specification

Option Contract

The option contract is defined as the style: American or European or Capped,
type put or call, number of shares, underlying asset, strike price and expiration.
A class of option refers to an option of the same type, underlying asset and style.
So for instance put options on GM are of the same class and call options on GM
are of another class. All options of the same class that have the same number
of shares and cover the same underlying asset with strike price and expiration
dates are a series.

Options are referred to as in-the-money, at-the-money or out-of-the-money. If
the strike price of a call option is less than the market price of the underlying
security the call is in-the-money, since the holder of the call can buy the stock
at a lower than market price. If a put option has a strike price greater than the
market price for the underlying asset then the holder is also in-the-money, since
the put holder can sell the underlying asset at a price greater than the market
price. Where in-the-money options have a positive cash flow to the holder the
converse is true for out-of-the money option holders. At-the-money options have
a zero cash flow to the holder.
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An option is normally exercised when the outcome is of some benefit to the
holder. The simple payoff of an option at expiration shows the benefit to the
holder.

The payoff of a call at expiration, where the strike price is less than the market
price can be represented as:

C = max(0, S — X) Where C is the call value, X the strike price and S the
stock price. The payoff of a put option at expiration can be represented as:

P =max(0, X — S). It should be noted that the payoff is the simple value of
the option at expiration and is not necessarily the profit, which will depend on
other factors including premium costs. The relationship between long and short
puts and calls is shown in Figures below.

A long call position with a stock price of 80 at expiration and a strike price of
30 has the characteristic shown in Figure The payoff will be the maximum
of 0 or the difference of the market price minus strike price.

For a short call position on the same stock as in Figure [6.2] the payoff will
have a maximum of 0 or minus the difference of the market price minus strike
price. This is also: min((X — S), 0)

Going long a put on the same stock as in Figure will have a maximum
payoff of O or the difference of the strike price minus market price.

Going short a put on the same stock as 6.1 will have a payoff of maximum
0 or minus the difference between the strike price, minus market price. This is
also: min((S — X), 0).

The intrinsic value of a stock option is the maximum of 0 and the value
it would be if exercised immediately. For a put option the intrinsic value is
therefore max((X_S), 0) and a call option intrinsic value is max((S_X), 0). And
in-the-money American option is worth at least its intrinsic value (as it can be

Long a Call
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FIGURE 6.1. Long call characteristic.
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Short a Call
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FIGURE 6.2. Short call characteristic.

exercised immediately) also an American option is worth at least as much as an
equivalent European option, due to the early exercise feature.

6.3.1. Dividends and Stock Splits

Exchange traded options are not cash dividend protected which means that
options are not adjusted for cash dividends. In early OTC trading the amount by
which a company declared its cash dividend was deducted on the ex-dividend
day from the strike price. The stock price generally falls just after a cash dividend

is made, so dividends are detrimental to call options (but conversely enhance
put options).

Long a Put
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FIGURE 6.3. Long a put characteristic.
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Market Price
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FIGURE 6.4. Short a put characteristic.

Stock splits occur when stock is split into more share issues. In an n-for-m
split the strike price is diluted by m/n times the previous value. The number of
shares covered by the contract is adjusted by n/m times the previous amount.
For example if ABC Inc’ has a call option for 100 shares at $27 per share and
then announces a 3 for 1 split. The option would be adjusted to 300 shares at
$9.00 per share.

If there is a stock dividend made then the exchange will adjust the options
accordingly. A stock dividend involves the company issuing extra shares to
existing shareholders. The stock price can be expected to reduce by an amount
proportionate to the percentage stock dividend. The exchange will adjust the
option price in much the same way as it does for stock splits. For example ABC
Inc’ has a put option on 100 shares at $10.00 per share. The company declares a
10% stock dividend which effectively means issuing 1 share for every 10 held.
This is the same as an 11 for 10 stock split so the option would be adjusted to
a put for 110 shares at $9.0909.

6.3.2. Option Quotes

Newspapers carry the daily premium prices for exchange traded options.
A typical newspaper listing is as outlined in Table below.

The first column lists the closing stock price with the second column listing
the strike price. Columns three to five list the call premium and columns six to
eight list the closing put premium. The premium prices are listed per share and
a contract is for 100 shares, so the cost of a single contract is 100*list price.
An r indicates that the option is not traded at the exchange and an s indicates
that the option is not listed on the exchange.
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TABLE 6.2. Premiums for exchange traded options.

Option & Strike Calls last Puts last
NY Close Price

May Jun Jul May Jun Jul
ABC 110 10'/8 1514 r 1116 r r
41472 400 r r r r 4 r
414172 420 3/4 gl/4 r r 1338 r
4141/ 430 r 43/4 r r r r
4141/ 440 r 23/8 r r r 34378
41412 470 r s s r 54174 r

From Table [6.2] the Jun110 in-the-money call has a premium of $1525.00 per
contract. The Jun420 out-of-money call has a contract price of $825.00. The
Jun420 in-the-money put is priced at $1312.50.

Option exchanges make use of the market maker system to set the option
prices. Market makers will quote for both the bid and ask price for an option.
The difference between ask (market maker’s price to sell) and bid (market
maker’s buying price) is the bid-ask spread and is set at limits determined by the
exchange. The limits are: $0.25 for options less than $0.50 and $0.50 for options
priced at $0.50 to $10.00, $0.75 for options in the range $10.00 to $20.00 and
$1.0 for higher prices. For exchange trading an option holding can be closed out
(liquidated) by an offset order to sell the option. The option writer can close out
by issuing an offset to buy the option.

6.3.3. Margin Accounts

Option contracts cannot be purchased on a margin account, option writers
however operate a margin deposit where the funds are deposited to ensure the
writer’s ability to pay any liability from an option being exercised. In writing a
Covered Call the writer is the owner of the underlying stock used to write the
call option. If a covered call is out of the money no margin is needed. If the
option is written as a Naked Option there is no offsetting in an underlying stock.
If the option is in the money the margin is set at 30% of the stock value plus
the in the money amount. If the option is out of the money the margin is 30%
of the stock value minus the out of the money value. The following examples
show the operation of margin accounts.

Example 6.0 Writing naked options

A participant writes two naked call option contracts. The option price is $8.0,
with a strike price of $56.0 and an underlying stock price of $59.0. The margin
addition required is therefore:

1. 30% of $59.00 *200 = $3540.0
2. The option is $59.0 — $56.0 = $3.0*200 = $600.0 in the money
3. The price received for the contract is $8.0*200 = $1600.0
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$3540.0+ $600.0 — $1600.0 = $2540.0.

If the option was a put (out of the money) the margin required would be:
$3540.0 — $600.0 — $1600.0 = $1340.0.

Example 6.1 Writing a covered call

An investor wishes to purchase 400 shares of stock on margin and write four
call options on the stock. If the market price of the stock is currently $70.00
and the strike price is $66.0, with a premium of $8. How much will the investor
need to pay up front?

50% of $70.00*400 = $14000.00.

The option is $70.00 — $60.00 = $4.00*400 = $1600.00 in the money.
Margin borrowing allowed is $14000.00 — $1600 = $12400.00.

Premium received from option is $8*400 = $3200.00.

Up front payment is therefore: Cost = $28000.00 — $12400.00 — $3200.00 =
$12400.00.

Nk =

The OCC (Options Clearing Corporation)

OCC is a registered clearing corporation with the Securities and Exchange
Commission (SEC) and has a triple A rating with Standard and Poor’s Corpo-
ration. The OCC guarantees the fulfilment of the writer’s liabilities and keeps
a record of the long and short positions. All option trades are cleared through
an OCC member, the members are collectively responsible for ensuring that
sufficient funds are deposited to cover an individual member being in default.

When an option is purchased the buyer must pay the premium by the next
business day, this is paid into the OCC account. The writer of an option maintains
the margin account with a broker; in turn the broker maintains a margin account
with the OCC (or an OCC member if the broker is not a member). The OCC
guarantees contract performance of all parties in an exchange traded option. The
option holder effectively deals with the ‘Corporation’ rather than an individual.
The OCC is buyer to the seller and seller to the buyer.

6.4. Arbitrage in Option Prices

6.4.1. Main Components of Pricing

There are six main components of stock option pricing:

1. Underlying Stock Price
2. Strike Price
3. Time to expiration
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4. Volatility
5. Risk free interest rates
6. Dividends

Underlying Stock Price

An option value is heavily dependant on the underlying market price of the
stock. The option is in the money if the price of the stock is in excess of the call
strike price. The payoff from a call option is the amount by which the market
price is above the strike price. Call options increase in value with the increase in
market price of the underlying stock and decrease in value with an increase of
strike price. For a put option if the strike price is below the market price the
option is in the money. The payoff for a put option is increased as the strike
price decreases and the option payoff decreases as the strike price increases. Put
options are more valuable as strike price increases and less valuable as market
price increases.

The difference between an in the money option’s strike price and the market
price is the intrinsic value of the option. By this definition only in the money
options have an intrinsic value.

Time to Expiration

For both put and call options the time to expiration has a direct relationship to
value. For any two American options if one considers that the only difference is
the expiration time it is intuitively obvious that the option with a longer expiration
time has more opportunity to move in the money. As the option with the shorter
time approaches expiration the opportunity for moving becomes less. Thus ceteris
parabus the longer life option is always worth at least as much as the shorter
life option. Time value of an option drops very rapidly as it nears expiration.

European options do not necessarily behave in the same way as American
options. Since a European option cannot be exercised until expiration, the longer
life option has only opportunity to exercise at maturity. If two call options
identical in all respects other than time have the underlying stock paying an
unexpectedly large dividend shortly after the expiration of the shorter life option
and just before the expiration of the longer life option. It could well be the case
that the longer life option is disadvantaged by the subsequent lowered stock
price, whereas the shorter life option would be more valuable.

Volatility

Volatility refers to the propensity of the underlying stock to move in price.
Volatility has a major influence on the premium price, with higher volatility of
stock giving higher premiums. The premium price reflects a degree of risk in the
option, with higher volatility the risk is perceived as higher for the option to go
in- the- money. Since volatility works both ways (changes are both up and down
in the stock price) the holder of a put or call option is equally well affected by
the volatility.
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Interest Rates

The risk free interest rate has a subtle effect on option prices. Generally as
interest rates increase the general level of stock prices are expected to increase.
However since the risk free rate has increased the discount factor for future cash
flows for option holders has increased and the value of future cash flows to the
holder is reduced. The combined effect of an increase in stock price and reduced
payoff tends to push a put option towards being out-of-the-money. A push option
therefore tends to reduce in value as interest rates increase and the push option
premium decreases.

For a call option increased risk free interest rates producing higher stock prices
makes the option more likely to be in-the-money, the effect of decreased value
of future cash flows with a higher discount rate tends not to be as pronounced as
the positive push effect of higher stock prices. In general call options increase
in value as interest rates increase and the premium of call options increases.

Cash Dividends

Dividends are paid to the stock owner and the amount of dividend paid reduces
the immediate value of the stock price in proportion to the dividend magnitude.
On the ex-dividend date the stock price is reduced making the likelihood of a call
option being out-of-the-money, thus reducing the option premium. The value of
put options are pushed in the opposite direction and the tendency is to have a
higher put premium. Non cash dividends are usually incorporated through other
mechanisms into the option pricing mechanism.

The trade off for various factors affecting the premium rate of options is
outlined in Table

The trade off effects are either positive on premium rates or negative for puts
and calls or in the case of volatility the effect is positive for both. With time to
expiration the effect on European option premiums is indeterminate.

Arbitrage Effects in Option Pricing

A riskless arbitrage opportunity exists when, for no initial investment, a nonneg-
ative return is achieved in all circumstances and positive returns under some
circumstances. In the theory of efficient markets there should be no riskless
arbitrage opportunities. When considering the factors affecting option prices

TABLE 6.3. Trade off for six co factors affecting stock option pricing.

American Call European Call European Put American Put
Stock Price pos pos neg neg
Strike Price neg neg pos pos
Time pos variable variable pos
Volatility pos pos pos pos
Interest Rates pos pos neg neg

Dividends neg neg pos pos
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we will consider the variables in relation to no arbitrage opportunities. As an
example an American put cannot take on a price less than its intrinsic value
otherwise the option can be purchased and immediately sold taking profit from
selling the underlying stock (realising an arbitrage opportunity).

The relationship between option prices will assume a no arbitrage principle and
will not depend on other extraneous factors such as volatility or transaction costs
such as fees margin deposits etc’. By considering option pricing in this way we
can derive some basic principles which will provide a foundation for discovering
the trading and pricing behaviours that include considering probabilistic models
and other external factors.

6.4.2. Limits for Pricing

Relative Option Pricing

There are limits set on the pricing of options if they are to adhere to the no

arbitrage principle. Several lemmas have been derived to describe the principles.

We will use a standardised notation to explain the option pricing mechanisms.
The notation used is as follows:

S: Stock price

X: The option strike price

7 : Expiration time (T-t)

T: Time of expiration

t: The current time

S,: The stock price at time T

r: Risk free interest rate

P: Put value of an American option
C: Call value of an American option
EP: Put value of a European option
EC: Call value of a European option
o: Volatility measure of stock prices

Upper Limits

Principle 1.0

An American or European call is never worth more than its underlying stock
price:

EC<Sand C <S.

An American put is never worth more than the strike price:
P<X
A European put is never worth less than the present value of the strike price:

EP <Xe™ ™
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This has to hold true otherwise the call value would exceed the stock price and
a covered call (see above) would enable an arbitrage profit. If the put value was
to be greater than the strike price there would be an opportunity for a riskless
profit by writing the option and investing the proceeds until expiration.

Lower limits

The lower limit for a European call option given a non dividend paying stock
can be represented by:

S—Xe "

The portfolio dominance principle tells us that portfolio A should be more
valuable than portfolio B if the payoff from A is at least as good under all
circumstances and better under some. This is analogous to the principle of
riskless arbitrage opportunities. For the lower limit of a European call:

Principle 2.0

The call option value on a non dividend paying stock is never worth less than
its intrinsic value. Consider two portfolios.

T

Portfolio A: A European call option plus cash equivalent to Xe™
Portfolio B: A single share of the underlying stock.

For portfolio A, assume the cash is invested at the risk free rate, at expiration
the value of cash will be X. If the stock price at expiration is greater than the
strike price, the option will be exercised and the value of the portfolio will be
S,. If the stock price is less than the strike price the option will expire at no
value and the portfolio will be worth X. The portfolio is therefore going to have
a value of:

max(S,, X)
Portfolio B is worth the stock price at expiration, S,. Therefore portfolio A will
always be at least as good under all circumstances as portfolio B and better than

portfolio B under some circumstances (at expiration). The no arbitrage principle
would suggest:

EC>S—Xe ™

Given that a call option value is always greater than its intrinsic value it follows
that in the worst case where the option expires worth nothing, that:

EC > max(S—Xe™ ", 0) (6.4.1)
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The lower limits for put options can be derived from the no arbitrage argument
in a similar way to the methods applied for call options. Consider the lower limit
for a European put on a non dividend paying stock. The limit can be expressed:

Xe " -8

Thus, the lower limit is the discounted strike price to expiration minus the stock
price. If the value was to be less than this difference an arbitrage opportunity
would exist. The arbitrageur could borrow at the risk free rate to buy the option
and the stock. At expiration, assuming the stock price is less than the strike price,
the stock option is sold, and loan is repaid, leaving a profit of: Strike price —
Loan repayment. If the stock price is higher than the strike price at expiration,
an arbitrageur will not exercise the option, but sells the stock. The loan can be
repaid and a profit of: Stock price — Loan.

If we consider two portfolios one of which contains a European option and a
share in the underlying stock and the other cash amount equivalent to the strike
price.

Portfolio A: A European put option and a single share of underlying stock.
Portfolio B: A cash amount equivalent to Xe™'".

Assume that the stock price at expiration is less than the strike price, S,_; < X.
Portfolio A then becomes worth X. If S._; > X, then portfolio A becomes
worth the stock price at expiration, S,_;. This is because the put is worthless at
expiration, leaving the single share of stock. Portfolio A is therefore worth:

max(S,_r, X)

With portfolio B it is assumed that the cash is invested at the risk free rate so
that the value of B is worth the strike price at expiration (X). it is therefore true
that portfolio A is always worth at least the value of portfolio B and in some
circumstances worth more. It therefore holds:

EP>Xe " —S

The worst case for a put option is to expire worthless therefore the lower limit
of the put option value can be represented as:

EP > max(Xe ™ —S,0) (6.4.2)

Code which implements the basic limit calculations for options is shown in
Listing [6.1] below.

package FinApps;

import static FinApps.PresentValue.*;
import static java.lang.Math.*;
public class Optionlimits {
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public Optionlimits() {
}
public double lowerlimitCall(double stockprice,double rate,
double time,double strikeprice)
{
return max( (stockprice-pVcont(rate,time,strikeprice)),0);
}
public double[] lowerlimitCall (double[ ]stockprice,double rate,
double time, double[] strikeprice)

int indx=0;
double[ ] lowervalues = new double[stockprice.length];
for (double s:stockprice)

{
lowervalues[indx]=max( (s-pVcont(rate,time,
strikeprice[indx])),0);
indx++;

}

return lowervalues;

public double lowerlimitPut (double stockprice,double
rate,double time,double strikeprice)

{

return max( (pVcont(rate,time,strikeprice)-stockprice),0);

}
public double[] lowerlimitPut(double[ ]stockprice,double rate,double
time, double[] strikeprice)

int indx=0;
double[ ] lowervalues = new double[stockprice.length];
for (double s:stockprice)

{
lowervalues[indx]=max( (pVcont(rate,time,
strikeprice[indx])-s),0);
indx++;

}

return lowervalues;

LISTING 6.1. Optionlimits.

The following two examples show the use of Optionlimits code to calculate the
option limits for European calls and puts.

Example 6.2 Calculation of lower limits of call options

The stock price and theoretical strike price for ABC Inc. has varied over a trading
day as follows:
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Intra Day Stock 51.0, 50.0, 52.3, 53.6, 51.0.
Proposed Strike 50.0, 49.5, 51.5, 52.5, 50.5.

Assume the risk free interest rate is 13% and the time to expiration is 6 months,

with current time = 0. What would the minimum premium per share be if any

of the Stock prices had been the closing price for a European call option ?
Using the formula of 6.1. We get:

Call option premium per share == 4.15
Call option premium per share == 3.62
Call option premium per share == 4.04
Call option premium per share == 4.40
Call option premium per share == 3.68

The code in Listing [6.2]is used to get the lower limit for a European call premium
calculation.

package FinApps;

import java.text.*;

import java.io.*;

import static java.lang.Math.*;

public class Example6_1 {

public Example6_1() {
}

public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(2);
formatter.setMinimumFractionDigits(2);
Optionlimits ops = new Optionlimits();
double[ ] stockprice = {51.0,50.0,52.3,53.6,51.0};
double[ ] strikeprice = {50.0,49.5,51.5,52.5,50.5};
double time =0.5;
double interest =0.13;
double[ ] premiums = ops.lowerlimitCall(stockprice,interest,
time,strikeprice);
for (double pr:premiums)
{
System.out.println("Call option premium per share ==
"+formatter.format (max(pr,0)));

LisTING 6.2. Lower premium calculation for a range of stock/strike prices.

Example 6.3 Calculation of lower limits for European put options

The stock price and theoretical strike price for ABC Inc. are as follows:
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Inta Day Stock : 38.0,39.0,40.0,45.0,38.0
Theoretical Strike: 40.5, 41.5, 42.5, 47.5, 41.0

The time to expiration is 6 months and the risk free rate of interest is 11%. What
would the minimum premium per share be if any of the Stock prices had been
the closing price for a European put option?

Using the formula of 6.2 we get:

Put option premium per share == 0.33
Put option premium per share == 0.28
Put option premium per share == 0.23
Put option premium per share == 0.00
Put option premium per share == 0.81

The code in Listing [6.3]1s used to get the lower limits for a European put option.

package FinApps;

import java.text.*;
import java.io.*;

public class Example6_2 {

public Example6_2() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.
getNumberInstance();
formatter.setMaximumFractionDigits(2);
formatter.setMinimumFractionDigits(2);
Optionlimits ops = new Optionlimits();
double[ ] stockprice = {38.0,39.0,40.0,45.0,38.0};
double[ ] strikeprice = {40.5,41.5,42.5,47.5,41.0};
double time = 0.5;
double interest =0.11;
double[ ] premiums = ops.lowerlimitPut (stockprice,interest,
time,strikeprice);
for (double pr:premiums)
{
System.out.println("Put option premium per share ==
"+formatter.format(pr));

o}

LisTING 6.3. Application code for Example 6.2

6.5. Early Exercise of American Options

Call Options

We assume that interest rates are always positive and derive the following two
principles:
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Principle 3.0

An American call option on a non dividend paying stock will not normally be
exercised before expiration.

Principle 4.0

An American call option on a dividend paying stock will only be exercised at
expiration or just prior to going ex-dividend.

It can be shown that it is non optimal to exercise an American call prior to
expiration. If the stock price underlying a call is above the strike price, with some
time, say n months prior to expiration. The early exercise of the option would
result in the holder paying the strike price, foregoing the interest on the strike
price for n months. If the stock was immediately sold the holder would realise
the intrinsic value, but a better strategy is to hold the option and short the stock.
Further, if the holder of the option simply sold the option rather than exercise it,
he or she would realise a profit greater than the intrinsic value. For these reasons
it is never optimal to exercise an American option prior to maturity.

Consider two portfolios:

Portfolio A: An American call option plus cash equivalent to the discounted
strike price Xe™'"
Portfolio B: A single share in the underlying stock.

Portfolio A contains cash with a value equal to X at maturity (T). Prior to
maturity the value of the cash is Xe "= at some time t, with ¢ < T, the value
of exercising portfolio A is S — X + Xe ""=9. If the portfolio remained until
exercise at maturity the value would be S — X 4 X (the value of the option at
expiration is max(S,X)). The value of portfolio A is therefore always less than
S when t < T, so portfolio A is worth less than portfolio B at early exercise.

If we keep the option to maturity and consider portfolio B, there is a prospect
of S < X, but portfolio A at maturity has a value which is max(S,X). Therefore
portfolio A is worth at least as much as portfolio B and under some circumstances
is worth more than portfolio B. If the option is exercised early then portfolio A
will always be less than portfolio B. An American call option on a non dividend
paying stock therefore should not be exercised prior to expiration. In this respect
An American call option has the same value as a European call option on the
same stock.

Put Options
Consider two portfolios:
Portfolio A: An American put option plus a single share in the underlying

asset
Portfolio B: Cash equivalent to Xe™'"".
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When the option in portfolio A is exercised at 7 < T the value of portfolio A
is worth the strike price, X. This value is greater than the value of portfolio B.
At maturity portfolio A is worth max(S, X). Thus portfolio A is worth at least
as much as portfolio B and under some circumstances worth more. The exercise
of an American put is more likely as the underlying stock price or stock price
volatility decreases and also becomes more attractive as the risk free interest rates
increase. The value of an American put increases as shown in Figure As
interest rates decrease the value increases all other things being equal. Figure [6.3]
also shows the price of an American put as X-S.

Figure [6.4] shows the characteristics for a put option with a strike price of
$40.50, with 6 months to expiration. The base interest rate is 10%, with each
curve reflecting a decrease of 1% from the base rate. The stock price is linear
in the range $37.50 to $40.50. The American put is linear and shows the price
as (X-S) its intrinsic value.

6.6. Option Convexity
It can be seen from Figure [6.3] that option prices are convex and those on parts

of the curve the price rise is higher for a rate decrease than it is lower for an
equal rate increase.

Price change with decreasing r for puts
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FIGURE 6.5. Price v rate change.
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Example 6.4

Consider three strike prices X; < X, < X;. With weight, o = %

Py, < wPy, + (1 = )Py, and Cy, < wCy + (1 — ®)Cy,. As an example
consider the ABC Inc June 420,430 and 440 calls from Table

40430 _
W=———=0U.
440 — 420
Cy, (4.75) < 0.5°Cy, (8.25) + (1.0 — 0.5)Cy, (2.375)
=475 <5312

Confirming the convexity property.

Listing shows a small utility class which will test an option price series
for convexity. The class uses a single method convexcheck The method uses
a two dimensional array to hold the option data series in order. The method
first calculates the weighting required and then performs equality checking by
implementing the basic equation. The output shows the calculated value and a
string representing the equality check.

package FinApps;
public class Optconvex {

public Optconvex() {
}

/** assumes that the array contains a series of 3 points in the order
x1<x2<x3 in the series pairs strike price - option price */

public double convexcheck(double[ ][ ]stprseries)
{
double w=( (stprseries[2][0]-stprseries[1][0])/
(stprseries[2][0]-stprseries[0][0]));
return stprseries[1l][1]<= (w*stprseries[0][1]
+(stprseries[2][l]-w*stprseries
[211011))>?
((w*stprseries[0][1])+(stprseries[2][1l]-w*stprseries
[2]01])):0.0;
+
}

LisTING 6.4. Computation of convexity

The code which implements Example 6.3 is shown below in Listing

package FinApps;

import java.text.*;
import java.io.*;
public class Example6_3 {
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public Example6_3() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);

Optconvex conv = new Optconvex();
double prices[][]1={
{420.0,8.25},
{430.0,4.75},
{440.0,2.375}
}i
double convalue=conv.convexcheck(prices);
String s=(4.75<=convalue)?"OPTION DATA IS CONVEX : value
" :"OPTION DATA NOT CONVEX : value ";
System.out.println(s+convalue);

}
}

LISTING 6.5. Application code for Example 6.3

6.7. Put Call Parity

Put-Call parity deals with the relationship between the variables S, X, EC, EP,
C, P and r. By analysing the relationships it is possible to value puts in terms of
calls and calls (puts) in terms of stock values and strike prices etc.

Consider two portfolios:

Portfolio A: A European call option and a cash amount equivalent to Xe™"".
Portfolio B: A single European put plus a single share in the underlying stock.

We have already seen that that at maturity the value of both portfolios is
the same; max(S, X). The value of portfolio A is equivalent to the value of
portfolio B so:

EC+Xe ™ =EP+S (6.7.1)

This is the put-call parity relation. This relationship allows us to derive the
value of a call with the same exercise price and maturity as a put on the same
underlying stock. This relationship is reversible and allows the derivation of a
put in terms of call data.

Example 6.5

Given a call price of $3.50 for a European option with the following characteristics:
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Stock price of $30.0

Strike price of $28.0

Time to expiration of 6 months
Risk free interest rate of 10%

Calculate the parity put price of the option and show the parity call price given
the calculated parity value.

3.50+28.0¢ %105 —30.0 = 0.134.
The parity call price is therefore:
0.134+30.0 —28.0¢ "% =3.5.

The code for Example 6.4 is shown in Listing 6.6. This makes use of the class
PutCallpar which is explained in Listing

package FinApps;

import java.text.*;
import java.io.*;

public class Example6_4 {

public Example6_4() {
}

public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);

PutCallpar parp= new PutCallpar("put");
double ansput= parp.europarity(3.5,28.0,30.0,0.1,0.5);
System.out.println("PUT PRICE IS == "+ansput);
PutCallpar parc= new PutCallpar("call");
double anscall= parc.europarity(ansput,28.0,30.0,0.1,0.5);
System.out.println("CALL PRICE IS == "+4anscall);

LISTING 6.6. European put-call parity.

Although put-call parity is applied to European options there are put call
relationships that hold for American options.

Given that P> EP, P> EC + Xe™"™ — S and the observation that a European
call has the same value as an American call it follows that:

C—P <S—Xe™ " (6.7.2)

Consider two portfolios:
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Portfolio A: EC plus cash equivalent to the strike price X.
Portfolio B: P plus a single share in the underlying stock S.

At maturity portfolio B is worth max (S, X) and portfolio A is worth: max (S, X)+

Xe7m—-X

Portfolio A is worth Xe'” — X more than portfolio B. The relationship is

therefore:

EC+ X > P+ S, which is also, C+ X > P+ S. By re arrangement we get:

(§—X) <(C=P) <(S§—Xe™)

Example 6.6

An American call option with a price of $2.40 has an exercise price of $23.0.
The stock price is $21.0, the risk free interest rate is 10% and the time is 3

months. Find the parity put price.

§—X=21.0-23.0,5—Xe *"0% =21.0-22.432 and C =24.0
So, 21.0-23.0<2.40—P <22.432—23.0

Which rearranged gives us the identity:

23.0-21.0> P—24.0>22.432-21.0
20> P—-240>1.432

Therefore P is in the range upper limit; $4.40 and lower limit; $3.832.
The code for example 6.5 is shown in Listing

package FinApps;
import java.text.*;
import java.io.*;
public class Example6_5 {
public Example6_5() {
}
public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(3);
PutCallpar par= new PutCallpar("put");
par.amerparity(2.40,23.0,21.0,0.1,0.25);
double[ ]parval=par.getAmerput();
System.out.println("PUT VALUE UPPER LIMIT == "+parval[0]+"
PUT VALUE LOWER LIMIT == "+parval[l]);
}
}

LISTING 6.7. American put call parity code for Example 6.5.
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The code in listing shows the class PutCallpar this class computes the put-
call parity for European and American options through the methods europarity
and amerparity. The method europarity deals with European call and put options.
The class is instantiated through the constructor PutCallpar (). The non default
constructor is called with the string “put” or “call” which is passed to the string
‘typeoption’ . Typeoption is used to define the put or call calculation in the
methods. The methods setAmerput(double,double) and getAmerput() are used
by the method amerparity to set and give access to the calculated values for
American put options. The convenience methods getAmercall(double,double)
and getAmercall() are similarly used to set and give access to American call
options.

package FinApps;
import static java.lang.Math.*;
import static FinApps.PresentValue. *;

public class PutCallpar {
public PutCallpar() {
}
String typeoption= "call";
double[ ] Amerput=new double[2];
double Amercall;
public PutCallpar(String type)

this.typeoption=type;

}
public double[ ] getAmerput ()
{
return Amerput;
}

private void setAmerput (double limitlower,
double limithigher)
{
Amerput[0]=limitlower;
Amerput[l]=limithigher;
}
private void setAmercall (double call)
{
Amercall=call;
}
public double europarity (double optionprice,
double strike, double stcprice,
double rate,double time)

double putfrmcall= (optionprice+(pVcont
(rate,time,strike))-stcprice);

double callfrmput=( (optionprice+stcprice)-pVvcont
(rate,time,strike));

return (typeoption=="put") ? putfrmcall:callfrmput;
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public void amerparity (double optionprice,double strike,
double stcprice,double rate,double time)
{
if (typeoption=="put")
{
double limitl=abs((stcprice-strike))+optionprice;
double limit2=abs((stcprice-pVcont(rate,time,
strike)))+optionprice;
setAmerput (limitl,limit2);
}else
{
double callvalue=(optionprice+stcprice)-strike;
setAmercall(callvalue);
}
}
}

LISTING 6.8. Class PutCallpar.

6.8. Strategies

An option strategy involves the taking of a position with one or more options
together with the underlying stock and associated borrowing or lending. There
are a range of possible option strategies available. The basic strategies are centred
on the notion of a portfolio containing an option, stock and some degree of
borrowing or lending to finance aspects of the strategy. See Options Clearing
Corporation (OCC) guide (2003).

We have already examined the six fundamental options available for a stock
namely, long a call, long a put, short a call, short a put, long stock and short stock.
Strategies are used to manage the risk reward profile of an investor, some strategies
are extremely risky others risk averse or neutral. Where the strategy involves
both an option and a security which offers protection to the return, the strategy is
a covered option. Covered options are the hedge, the spread and the combination.

Hedge

A hedge combines the option with its underlying stock, so that there is mutual
protection against loss. A hedge which combines a long position in the stock
with a short position in a call is called a covered call. A protective put is a hedge
which combines a long position in the stock with a long put option. A reverse
hedge is one that offers the reverse of the covered call or protective put.

By examining the profit v stock price characteristic of an option strategy the
behaviour of the payoff can be seen in relation to the underlying stock and option
changes with time to expiration. The basic analytical technique is put-call parity.
If we consider the basic put-call parity on a dividend paying stock:

EP+S=EC+Xe " +D

The value of a long position in a put plus a long position in the underlying stock
is the same as a long position in a call plus the discounted cash value of the
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strike price and an amount equivalent to the discounted dividends. Strategies are
characterised as bullish, bearish or neutral in market terms. A bullish view is one
where the strategy is geared to a market (stock) rise, whereas the bearish view is
based on the market going down. The profit diagram is useful for showing the
general characteristic of taking a particular strategy with a range of stock and
option prices and aids decision making relative to possible alternatives.

6.8.1. Hedge with a Protected Put

Figure[6.@]shows the characteristic of a protected put strategy. The profit diagram
shows that a long stock position is negative until the market price is in excess of the
price paid. The long put position is positive for values less than the exercise price
(minus the option cost). The profit diagram does not take into account the time value
of cash initially expended. The investor is therefore bullish concerning the stock

6.8.2. Reverse Protected Put Hedge

Figure displays the reverse protective put. The characteristic shows opposite
behaviour to that shown in Figure As the stock price is less than the strike
price, a short stock position exhibits greater profit. Towards the strike price, the
profit from going short on stock falls and eventually becomes negative. The long
call exhibits negative profit to the cost of the option. If the option is exercised
greater than the strike price the long call increases in profit. The market outlook
is thus bullish for the long call.

6.8.3. Hedge with a Covered Call

Figure outlines the characteristics of a covered call. A covered call strategy
involves writing a call option whilst having bought the underlying stock. If the
stock is already owned the strategy is referred to as a ‘buy-write’. The position is
therefore long in stock and short a call. The strategy is largely neutral or bullish
in relation to the market outlook. The strategy offers an opportunity to cover
any losses in the underlying stock price, with a decline in stock price. In this
case the gain is in any appreciation left in stock value from initial purchase price
plus the premium paid for the option. If the price of the stock exceeds the strike
price such that the option is exercised then the profit is the premium plus any
difference between the original purchase price for stock and the exercise price.

6.8.4. Reverse Covered Call Hedge

Figure [6.9] shows the reversed covered call this is short stock and long a call. In
the reverse of a covered call, protection is given against a rise in the stock price.
The short stock position is most profitable when stock can be sold (short) at a
higher price than is currently on the market. As the stock price increases to the
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Profit Diagram
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FIGURE 6.6. Hedge with protected put.
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FIGURE 6.7. Reverse protected put hedge.



152 6. Options

Profit Diagram
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FIGURE 6.9. Hedge with reversed covered call.
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short price and beyond the investor can loose substantial amounts of cash. The
long call will offer protection against this occurrence.

The protected put defined as: EC + Xe ™+ D

The reverse protected put defined as: —EC + Xe ™+ D

Covered call defined as: Xe™"+ D — EP

Reverse covered call defined as: EP+ Xe™ '™+ D

Listing describes the class Putcallpos. This class contains a series of
convenience methods to access profit data for the basic hedge strategies. Access
methods such as getShortcallprofits () are public methods used by the calling
program. The private methods such as setScallprof () are used by the class void
methods to store the calculated data. The implementation of the calculations is
therefore contained within the class and not available to user view. The calling
programs access all data through the get methods.

The void methods callprof () and putprof () perform the basic calculations
for put and call option profits. There are two implementations of the methods
one for single data points, where a point on the profit diagram is required and
multiple data points where a series of profit points are needed for series display.

package FinApps;
public class Putcallpos {

public Putcallpos() {
}

double shortcallprof;

double[ ]shortcallprofarray;

double longcallprof;

double[ ]longcallprofarray; // data storage variables //

double longputprof;

double[ ] longputprofarray;

double shortputprof;

double[ ] shortputprofarray;

private void setScallprof (double scallprofit) {
this.shortcallprof=scallprofit;

}

private void setScallprof (double[ ]scallprofit) {
this.shortcallprofarray=scallprofit;

}

private void setLcallprof(double lcallprofit) {
this.longcallprof=1lcallprofit;

}

private void setLcallprof(double[] lcallprofit) {

//Methods that contain local calculation results//

this.longcallprofarray=1lcallprofit;

}

private void setLputprof (double lputprofit) {
this.longputprof=lputprofit;

}

private void setLputprof (double[] lputprofit) {
this.longputprofarray=lputprofit;

}

private void setSputprof (double sputprofit) {
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this.shortputprof=sputprofit;
}
private void setSputprof (double[] sputprofit) {
this.shortputprofarray=sputprofit;
}
public double getShortcallprofit() {
return shortcallprof;
}
public double[] getShortcallprofits() {
return shortcallprofarray;

}

public double getLongcallprofit() {
// Public methods allowing access to the set results//
return longcallprof;
}
public double[ ] getLongcallprofits() {
return longcallprofarray;

}

public double getLongputprofit() {
return longputprof;

}

public double[ ] getLongputprofits() {
return longputprofarray;

}

public double getSputprofit() {

return shortputprof;
+
public double[ ] getSputprofits() {

return shortputprofarray;
}
public void callprof (double callpr,

double exercisepr,double stockprice) {// single data//

double shrtcallprofit= stockprice<=exercisepr?callpr:
(callpr-(stockprice-exercisepr));
setScallprof (shrtcallprofit);
double lngcallprofit= stockprice<=exercisepr?-callpr:
(-callpr+(stockprice-exercisepr));
setLcallprof (lngcallprofit);
}
public void callprof (double callpr,double
exercisepr,double[] stockprice) {//series data//
double[ ]shrtcallprofit=new double[stockprice.length];
double[ ]1ngcallprofit=new double[stockprice.length];
int indx=0;
for (double s:stockprice) {
shrtcallprofit[indx]= stockprice[indx]<=exercisepr?callpr:
(callpr-(stockprice[indx]-exercisepr));
Ingcallprofit[indx]= stockprice[indx]<=exercisepr?-callpr:
(-callpr+(stockprice[indx]-exercisepr));
indx++;
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setScallprof (shrtcallprofit);
setLcallprof (lngcallprofit);

}

public void putprof (double putpr, double
exercisepr, double stockprice) {
double lngputprofit= stockprice<=exercisepr?
(-putpr+(exercisepr-stockprice)):-putpr;
setLputprof (lngputprofit);
double shrtputprofit=stockprice<=exercisepr?
(putpr+(exercisepr-stockprice) ) :putpr;
setSputprof (shrtputprofit);
}
public void putprof (double putpr, double exercisepr,
double[ ] stockprice) {
double[ ]lngputprofit=new double[stockprice.length];
double[ ]shrtputprofit=new double[stockprice.length];
int indx=0;
for (double s:stockprice) {
lngputprofit[indx]= stockprice[indx]<=exercisepr?
(-putpr+(exercisepr-stockprice[indx])):-putpr;
shrtputprofit[indx]=stockprice[indx]<=exercisepr?
(putpr+(stockprice[indx]-exercisepr) ) :putpr;
indx++;
}
setLputprof (lngputprofit);
setSputprof (shrtputprofit);
T}

LisTING 6.9. Computation of basic profit data

6.9. Profit Diagrams

The profit diagram is an investor tool which allows the behaviour of option and
stock prices to be assessed when developing a particular strategy. The profit
diagram is not inherently analytical; it provides the user with an indication of
likely outcomes that might not be intuitively apparent.

We have already seen that using hedge strategies offer protection against
undesirable moves in the market. Hedge strategies also offer the possibility of
adopting different profit transformations with combinations of stock and option
positions. For example the four basic hedge positions shown in Figures
actually transform into four basic profit patterns. If we include the cost of stock
acquisition (not including any time value) and add this to the basic profit diagrams
and sum the characteristics we will get the basic profit diagrams transformed
into those shown in Figures

The stock price ranges are:

for call options 115.0,125.0,135.0,145.0,155.0,165.0,175.0,185.0,190.0.
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for put options 45.0,55.0,65.0,75.0,85.0,95.0,105.0,115.0,125.0. Assume that
the option premium in both cases is 3.50.

The transformations of pattern show that for a covered call the resulting profit
behaviour is similar to that of a short European put. For a reverse covered call
the pattern is that of a long European put. The pattern transformations with put
option profits shows that the protected put is a long European call profile, the
reverse protected put has a European short call profile.

The transformations can be seen from the put-call parity relationships namely:

Covered call (S — EC) = —EP (short put) plus cash

Reverse covered call (EC —S) = EP (long put) plus cash
Protected put (S+EP) = EC (long call) plus cash

Reverse protected put (—(S +EP)) = —EC (short call) plus cash.

Listing [6.9] shows the class Hedgepos. This class contains the void methods
covercall () and protectedput () these two overloaded methods are used to provide
the basic profit calculations for the covered call and protected put respectively.
Each method instantiates an object from the Putcallpos class. The object’s from
Putcallpos are used to access the methods from that class such as getShortcall-
profits() and getLongputprofits(). The covercall() and protectedput() methods
use an iterative loop to perform the profit point calculations and store the results
for the array series version. For the single point version only that single point in
the profit space is stored.

Overall profit of Covered call
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FIGURE 6.10. Covered call profit.
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Opverall profit Reversed Covered Call
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FIGURE 6.11. Reversed covered call profit.

Hedgepos also provides void methods revcovercall() and revprotectedput()
to provide calculations for the reverse hedge. The class has a series of accessor
methods for the calling program to retrieve profit data.

Overall profit Protected Put
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FIGURE 6.12. Protected put profit.
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Overall profit Reverse Protected Put
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FIGURE 6.13. Reverse protected put profit.

package FinApps;
public class Hedgepos {

public Hedgepos () {
}
private double coveredcall;
private double[ Jcoveredcalls;
private double revcoveredcall;
private double[ Jrevcoveredcalls;
private double protectedput;
private double|[ ]protectedputs;
private double revprotectedput;
private double[ Jrevprotectedputs;
private void setProtectput(double profitvalue) {
protectedput=profitvalue;
}
private void setProtectput (double[] profitvalue) {
protectedputs=profitvalue;
}
private void setrevProtectput (double profitvalue) {
revprotectedput=profitvalue;
}
private void setrevProtectput(double[ ] profitvalue) {
revprotectedputs=profitvalue;
}
public double getProtectedput() {
return protectedput;
}
public double[ ] getProtectedputs() {
return protectedputs;

}
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public double getrevProtectedput() {
return revprotectedput;

}

public double[ ] getrevProtectedputs () {
return revprotectedputs;

}

private void setCoveredcall (double profitvalue) {
coveredcall=profitvalue;

}

private void setrevCoveredcall (double profitvalue) {
revcoveredcall=profitvalue;

}

public double getCoveredcall() {
return coveredcall;

}

public double getrevCoveredcall() {
return revcoveredcall;

}

private void setCoveredcalls(double[ Jprofitvalues) {
coveredcalls=profitvalues;

}

private void setrevCoveredcalls(double[ Jprofitvalues) {
revcoveredcalls=profitvalues;

}

public double[] getCoveredcalls() {
return coveredcalls;

}

public double[] getrevCoveredcalls() {
return revcoveredcalls;

}

public void covercall (double costofstock,double strike,
double stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
p.callprof(costofoption,strike,stockprice);
double stockprofit=p.getShortcallprofit();

double profit=costofstock<=stockprice? (-costofstock+stockprice):
(stockprice-costofstock);
setCoveredcall (profit+stockprofit);
}
public void covercall (double costofstock,double strike,double] ]
stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
int indx=0;
double[ ]profits=new double[stockprice.length];
double[ Joptionvalues=new double[stockprice.length];
p.callprof (costofoption,strike,stockprice);
optionvalues=p.getShortcallprofits();

for (double s:stockprice) {
double profit=costofstock<=stockprice[indx]? (-costofstock
+stockprice[indx]):
(stockprice[indx]-costofstock);
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profits[indx]=(optionvalues[indx]+profit);
indx++;

}

setCoveredcalls(profits);

}

public void revcovercall (double costofstock,double strike,
double stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
p.callprof(costofoption,strike,stockprice);
double stockprofit=p.getLongcallprofit();
double profit=(costofstock-stockprice);
setrevCoveredcall (profit+stockprofit);
}
public void revcovercall (double costofstock,double strike,double] ]
stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
int indx=0;
double[ ]profits=new double[stockprice.length];
double[ Joptionvalues=new double[stockprice.length];
p.callprof(costofoption,strike,stockprice);
optionvalues=p.getLongcallprofits();

for (double s:stockprice) {
double profit=(costofstock-stockprice[indx]);

profits[indx]=(optionvalues[indx]+profit);
indx++;
}
setrevCoveredcalls (profits);
}
public void protectedput (double costofstock,double strike,double
stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
p.callprof(costofoption,strike,stockprice);
double stockprofit=p.getLongputprofit();
double profit=costofstock<=stockprice? (-costofstock+stockprice):
(stockprice-costofstock);
setProtectput (profit+stockprofit);
}
public void protectedput (double costofstock,double strike,double] ]
stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
int indx=0;
double[ ]Jprofits=new double[stockprice.length];
double[ Joptionvalues=new double[stockprice.length];
p.putprof (costofoption,strike,stockprice);
optionvalues=p.getLongputprofits();

for (double s:stockprice) {
double profit=costofstock<=stockprice[indx]?(-costofstock
+stockprice[indx]): (stockprice[indx]-costofstock);
profits[indx]=(optionvalues[indx]+profit);
indx++;
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setProtectput (profits);
}

public void revprotectedput (double costofstock,double strike,double
stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
p.putprof (costofoption,strike,stockprice);
double stockprofit=p.getSputprofit();
double profit=(costofstock-stockprice);

setrevProtectput (profit+stockprofit);
}
public void revprotectedput (double costofstock,double strike,
double[ ] stockprice,double costofoption) {
Putcallpos p=new Putcallpos();
int indx=0;
double[ ]profits=new double[stockprice.length];
double[ Joptionvalues=new double[stockprice.length];
p.putprof (costofoption,strike,stockprice);
optionvalues=p.getSputprofits();

for (double s:stockprice) {
double profit=(costofstock-stockprice[indx]);
profits[indx]=(optionvalues[indx]+profit);
indx++;

}

setrevProtectput (profits);

}

LisTING 6.10. Class Hedgepos provides calculations for hedge profit diagram
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7
Modelling Stock Prices

7.1. The Stochastic Process

A stochastic process is one which changes over time in an uncertain way.
A discrete stochastic process for a variable is one where the variable can only
change at fixed points in time, a continuous time stochastic process is one where
the variable is capable of changing at any point in time. A process can have a
continuous or discrete variable associated with it. A discrete variable is one that
takes on a discrete value within a range, a continuous variable process is one
where the variable can take on any value within a range.

The Markov process is a stochastic one where the present value of a variable
is the only factor in influencing the prediction of its future value. It is assumed
that stock market prices follow a Markov process. Some definitions are useful:

A stochastic process X = {X(f)} is a series of random variables over time.
X(7) is the state of the process at time t. In a discrete process the state is
usually written as a subscript; X = X,. For the continuous process, parentheses
are maintained.

The continuous time process has independent increments if for all times,
ty <t... <t, the variables X(t,) — X(¢,), X(t,) — X(¢;) ... X(¢,) — X(¢t,_,) are
independent. If the random variables for all times 7, < ¢, ... < t, have the same
distribution for X (7 + s) — X(r) the process is stationary and depends only on s.
The mean m, = E[X(f)] is the expected value of the random variable. See the
book by Higham for an overview.

7.1.1. Random Walks

A random walk is the behaviour of a variable where the next value is a function
of its present value plus a movement with a random probability:

Xn = Xn—l + &y

Figure [Z1] shows the up and down movement of a variable, which can go up
with a probability p of 0.5 and down with a probability of (1 — p) =0.5. The
up and down movements are cumulative. If the random variable & is positive
the next state is the current state plus an upward movement. If € is negative the
next state is the present state plus a downward movement.
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FIGURE 7.1. Random Walk.

A random walk with drift is a random walk with the addition of a term to
include the expected value of the change per time period. The random walk with
drift is defined as:

X,=X,_,+¢&,+un Where u is the expected change per time period.

7.1.2. Brownian Motion

Brownian motion is a stochastic process where the random variables are
independent of each other. X(z,) — X(¢,_,) is normally distributed with a mean
w(Ax) and variance o?(Ax). Brownian motion is described by the mean and
variance parameters as a process (u, o) with a drift of u and variance o?.
Brownian motion with zero drift and unity variance (0, 1) is effectively a
symmetric random walk. This is shown in Figure

Figure [Z3] shows the value of a stochastic variable following a 20, 10 path of
Brownian motion. The central line is the mean value, . The line either side of
the mean represents a standard deviation of 0.1%4/7.

7.1.3. Wiener Process

Brownian motion with a mean of zero and standard deviation of unity is also
known as the Wiener process. Brownian motion expressed in terms of the Wiener
process can be represented by:

Y(1) = ut+oX(1) (7.1.1)

Where X(¢) is the Wiener process.
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The Wiener process is implemented in Listings 7.1 and 7.2 which shows
a simple random process in Listing 7.1 and the generalisation which incor-
porates drift with time and risk (standard deviation) in Listing 7.2. Brownian
motion is implemented in Listing 7.3. The classes are part of package
CoreMath.

package CoreMath;
import java.util.Random;
import static java.lang.Math.sqgrt;
public class Wiener {
public Wiener() {
}

public double wienerProc( double t)
{
Random r= new Random( ) ;
double epsilon=r.nextGaussian();
return sqrt(t)*epsilon;

LisTING 7.1. Random source for Wiener

public class Genwiener {
public Genwiener () {
}
private double constdrift;
private double wienervalue;
private void setDrift(double driftval)
{
constdrift=driftval;
}
public double getDrift()
{
return constdrift;
}
private void setWiener (double wienval)
{
wienervalue=wienval;
}
public double getwienerval()

{
return wienervalue;
}
public double genWienerproc(double drift, double t, double sd)
{
Wiener w=new Wiener();
double deltaz;
double driftvalue;
double deltax;
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deltaz=w.wienerProc(t);
setWiener (deltaz);
driftvalue=drift*t;
setDrift(driftvalue);

deltax=(driftvalue+(sd*deltaz));
return deltax;

LISTING 7.2. Generalised Wiener process

package CoreMath;
import static java.lang.Math.*;

public class Geobrownian {

public Geobrownian() {

}

private double pointdrift;

private double pointsd;

private void setDrift(double drift) {
pointdrift=drift;

}

private void setSd(double sd) {
pointsd=sd;

}

public double getpDrift() {
return pointdrift;

}

public double getpSd() {
return pointsd;

}

Genwiener g=new Genwiener();

public double[][] expBrownian(double mu, double sigma,
double times, int points) {

double[] [] wval=new double[points+1]1[4];

wval[0][0]=0.0;

wval[0][1]=0.0;

wval[0][2]=(sqgrt((exp(0.0)-1)*exp(2*0.0)));

// assumes sd ==

double varval;

double interim=0.0;

int counter=1;

double d=points;

double driftvalues=0.0;

while(counter<points) {
varval=(sqrt((exp(counter/d)-1)*exp(2*counter/d)));
interim=(g.genWienerproc(mu, times,sigma)+interim);
wval[counter][0]=exp(interim);
driftvalues=(driftvalues+g.getDrift());

167
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wval[counter][l]=exp(driftvalues);
wval[counter][2]=(wval[counter][1l]+varval);

//drift plus variance
wval[counter][3]=(wval[counter][1l]-varval);

//drift minus variance
counter++;

return wval;

public void geoBrownian(double mu,double sigma,double time)
//Assumes annual periods/ratios

Genwiener g=new Genwiener();
double process=exp(g.genWienerproc(mu,time,sigma));
setDrift(exp( (g.getDrift())));
setSd( sqrt( (exp(2.0*mu*(time)
+pow(sigma, 2.0)*(time))*
(exp(pow (sigma, 2.0)*(time))-1))));

}

LISTING 7.3. Brownian Motion

7.1.4. Ito Differential

The Ito differential is a stochastic equation that solves:

dX, = a(X,, )dt + b(X,, 1)dz (7.1.2)

The equation dX, = a,d, + b,dz, is an instance of Brownian motion with an
instantaneous drift of @, and variance b?. The parameters a and b are functions
of the variable X, the dz is assumed to be a ¢(0, dt) (normally distributed
with mean O and variance dt). An equivalent form of 12.1.3 is the Langevin
equation:

dX, = a,dt + bev/dt (7.1.3)

Where ¢ is a random drawing from a standardised normal distribution, ¢(0, 1.0).
The Ito process is implemented in the class shown in Listing [Z.41
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package CoreMath;

import static java.lang.Math.*;

import java.util.*;

/**

* Computes the generalised Wiener process where the parameters are
functions of the underlying variable

public class Itoprocess {

public Itoprocess() {
}
private double sdchange;
private double meanvalue;
private double changebase;
private void setChange(double changevalue)
{
changebase=changevalue;
}
public double getBaseval()
{
return changebase;
}
private void setSd(double sd)
{
sdchange=sd;
}
public double getSd()
{
return sdchange;
}
private void setMean(double drift)
{
meanvalue=drift;
}
public double getMean()
{

return meanvalue;

[ x*
*
* @param mu mean value
* @param sigma The variance
* @param timedelta time periods for each step
* @param basevalue the starting value
* @return The change in the base value
*/
public double itovValue(double mu, double sigma, double
timedelta,double basevalue)

setSd(basevalue* (sigma*sqgrt(timedelta)));
Genwiener g=new Genwiener();
mu=mu*basevalue;

sigma=sigma*basevalue;
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double change=( g.genWienerproc(mu, timedelta, sigma));
setChange(change);

setMean(g.getDrift());

return change;

}

LISTING 7.4. Tto Process

Example 7.0

A zero dividend stock has an expected return of 10% per annum with a volatility
of 20% per annum. What is the expected return in one week if the current stock
price is $65.0?

Using the Langevin equation for the Ito differential we get:

The change in stock price = —$1.1649.

This is a random drawing from a normal distribution with mean = $0.1248,
and standard deviation of $1.8013. The expected return is therefore $63.835.

The code for this example is shown in Listing

package FinApps;

import static java.lang.Math.*;
import java.io.*;

import CoreMath.Itoprocess;

public class Example7_0 {

public Example7_0() {
}

public static void main(String[] args) {

Itoprocess i=new Itoprocess();
i.itovalue(0.10, 0.20, 0.0192, 65.0);
System.out.println("NEW Stock price == "+(65.0+i.getBaseval())+
"for a change of "+i.getBaseval()+" froma
mean of "+i.getMean()+" and a standard deviation of "+i.getSd());

}
}

LISTING 7.5. Example [Z0]

7.2. Lognormal Modelling of Stock Prices

Generally speaking, we are not concerned with the historical behaviour of actual
stock price data. This is a natural corrolary of the Markov property which governs
stock prices where the past behaviour has no relevance to future behaviour.
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The exception to this general rule is in the validation and calibration of stock
modelling techniques.

We will examine in the next section, various properties of the lognormal
distribution for stock prices. One of the central questions is how realistic are
the mathematical models? There are numerous statistical techniques available to
the modeller for calibration and verification, one of the simplest is a lognormal
based model.

The central purpose behind the use of empirical data is to provide a ‘standard’
for estimating the input parameters used in price process simulation models. The
parameters used in the example above were w, o and S,; the aim of the (Ito)
process being to generate a feasible value for the expected return at a future
date. We could have used a trivially simple approach which takes the current
published price of the stock and taken the last two days and divided by two, to
arrive at a mean and variation. This would be highly unlikely to provide us with
a ‘realistic’ appreciation of the particular stock price behaviour. The sample size
and distribution for empirical data is an area where there is some debate and we
will examine some more technical techniques in later chapters.

A fairly straightforward and reasonably robust method for determining input
parameters is the lognormal analysis of empirical price data. The method involves
taking a set of historical price data, this can be closing, adjusted closing or
some adjusted combination of opening/closing prices and/or ex-dividend adjusted
prices. These factors and the period of sample data are largely a matter of
experience and judgement as to the appropriateness of the technique for a
particular process model (and market).

7.2.1. Handling Empirical Data

The method involves the following steps:

a) Source the price data for a given period, which should be appropriate for the
process model

b) Pre-process the data into the appropriate form (in this case lognormal)

c¢) Statistically analyse the pre-processed data

d) Extract the required statistics (in this case p and o)

e) Use the statistics as input parameters to the process model

f) Gauge the simulated output against the empirical data and calibrate the model
if needed.

In the straightforward case of deriving input parameters step f is omitted.

We know that prices can be modelled as an instance of Brownian motion with
mean u and variance o2, which can be viewed as a variable X following a path
with drift u and a variance influenced by a random drawing from a standardised
normal distribution ¢(0, 1.0). If we denote the initial stock price as S, at time
t =0 and the price S, at a future time, t = n. The ¢, can represent any time
frame such as trading days, intra day (hourly) or real time, so that 7, ; might
refer to one and a half trading days. The random movement of a stock price
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FIGURE 7.4. Step a. Raw data showing closing prices for 223 trading days.

can then be described as §,, S;_, S._,, with §; =S, | X;,1 <i <n where X;
are independently and identically distributed, ie, X, : (u;, 7). The variable X
is said to be lognormal since it is dependent on a random variable { such that
(= (’%”“) and X = exp(u + {o), thus log X has mean p and standard deviation
.

A process simulation that can generate a series of variables X, X, which are
lognormal can therefore generate a simulation of stock prices with mean p and
standard deviation o.

As an example, using price data for IBM stock, we will determine the mean
and standard deviation of closing price movements. From this we will use a
process simulator to generate a series of lognormal price trajectories and compare
these to the empirical data.

Step a.

Following the steps outlined above, stock price data from IBM, following
closing prices over a period (03.01.2005 to 17.11.2005) of 223 trading days is
collected and shown in Figure [Z.4]

Following step a, we transform the raw data into a natural log form:

Step b.

From our observation thatand S; = S;_,*X; and X; : ¢(u;, o) from our discussion
above that log(X) is (standardised) normally distributed, then / ( ) where S,
are raw stock prices, will give us the necessary transformation into a lognormal
series of prices.

Step c.

If the series of logarithm transforms are denoted as Y;...Y, IID (independent
and identically distributed) normal variates, it is known from the properties of
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FIGURE 7.5. Log(Prices) mean with +/— 2 SD’s.

standard normal statistics that the mean ¥ = (W)

. This gives us an unbiased

estimate of w and ﬁ* pay. (Yi -7 )2 gives us an estimate of o>,

Figure shows the log of stock prices, together with mean and plus/minus
two standard deviations for the distribution of log (raw data).

We can see from the graph that more than 95% of data points are within
+2 standard deviations, which is in reasonable agreement with the theoretical
position that around 95% of a normally distributed variable should be within £2
Standard Deviations of its mean. If the data points deviated significantly from
this observation we would conclude that the data is exhibiting aberrant behaviour
and was not suitable for the particular model.

Step d.
We have the drift (1) and the standard deviation (v/o2) of the natural log of
closing stock prices.

Figure [7.6] shows the raw stock prices with the calculated drift line.

Step e
The p and o which w? derived from raw data has been extracted from the

logarithmic process, /,5"~. The theoretical process followed by the natural log

of stock prices can be described by Ito’s lemma.
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FIGURE 7.6. Stock Price & Drift for IBM Stock.

Recall that the Ito process can be described by the equation dX, = a(X,, t)dt+
b(X,, t)dz. Where the drift and variance are liable to vary over time.

To model the real situation where a stock price exhibits even variation over
the percentage return. We can define ¢? as the variance of proportional change
in stock price and ¢?A, as the change in time, A,. Therefore o?S%A, is the
variance of the change in stock price in time A,. This infers that the stock price
can be modelled with an Ito process where the instantaneous variance is oS
The drift rate of actual stock prices is shown to be proportional to the stock
price and not constant. For a short time period A, the drift w is therefore going
to be a proportion of the stock price change, so in time A, the increase in stock
price will be SuA,. Combining the proportional changes in drift and volatility
suggests the Ito model which can be expressed as:

dS = Sudt+ Sodz (7.2.1)

The proportional change is therefore:

ds
<= ndt+odz (7.2.2)

If we define ® as a function of S and ¢, following 7.1.5,

P b 1 D
dd =
as ot 45?

—uS+ —+-—0’5" dt~|—@0'5dz (7.2.3)
* 2 a8 -
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If we define the function as the natural logarithm such that ® = [, S. Working
through the equation:

1 11 ,., 1
dd = (EMS+O_§§U S )dt—i— EUSdz.

Note:
Since ® = [,S, the differentiation of [,, gives us dP/dS =
0,Pd/dS? = -5

Thus, db=(u— ”72> dt + odz. This indicates that /,S follows a generalised

Wiener process with drift, (,u— a? /2) and variance o. The change in [, S is
therefore

o/t =

1
S’

N:d ((“_ T NT =), o /(T — z)) (1.2.4)

2

We have an appropriate stock price model based on 6.1.8 in to which we can
insert the empirical parameters, u and o. The empirical value for the mean
can be used directly in a discrete time model or can be transformed into the
continuous time model. Recall that the discrete time model for the process is:

AS = AtuS + AzoS

In this case the u and o, which we have taken from the raw data is used. Note
that the empirical estimates of ¢ and w are based on the daily (not the usual
annual) returns, thus A, = 1. If we wish to extrapolate to other time periods,
then the daily returns need to be transformed into the appropriate trading period
ratios.

To make use of the continuos model we transform the mean to : "_2"2. The
choice of model is determined by the particular rate of return we have an
interest in.

In the following example we will use a discrete rate of return which will of

course have a higher drift rate.

Example 7.1

This example takes the daily stock price returns for 223 trading days. The
data chosen are the unadjusted closing prices, which are read into the array
data. These data points are transformed into the log ratios using a simple for
loop which places the log ratios into the array expon. The array is passed to
method variance() which is a static method from class DataDispersion. The class
provides convenience methods DgetVariance() and DgetMean() which provide
the basic statistics from our data points.

The data from IBM, when analysed provide the estimated daily return as
0.000528 and estimated daily return standard deviation of 0.01163.
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The class MonteCprices provides a simulation process based on the Monte
Carlo methods, which are desribed with greater detail in the book by Glasserman.
The class MonteCprices is shown in Listing .6 The class is instantiated as
an object ‘m’ with the constructor passed as 223 (the data set size) the object
provides access to the simulation method simValuep(). The mean and standard
deviation are passed to this method, which returns the simulated data array.

/* Calculates the simulated values based on log ratio of raw data
*Produces the daily volatility from raw data anlysis.
*Default time is 1 day

*/

package FinApps;

import static java.lang.Math.*;

import static BaseStats.DataDispersion.*;

import static FinApps.Fileinput.*;

import java.text.*;

import java.io.*;

public class ExampleModell {

public ExampleModell () {

}

public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumFractionDigits(3);

double[] data=new double[223];
double[]expon=new double[223];
double[]monte=new double[223];
double[]drift=new double[224];
MonteCprices m= new MonteCprices(223);

fileinput("c:\\IBM.txt",223);

data=getFileData();//get raw data

for(int i=1;i<data.length;i++){
System.out.println("DATA =="+data[i-1]);
expon[i-1l]=log((data[i]/data[i-1]));
System.out.println("EXPON data=="+expon[i-1]);

}

double s=variance(expon);// variance and mean of the log ratios

double gsd=sqgrt(DgetVariance());

double gmean=DgetMean();

double time=1.0;

double t=(1.0/data.length);

double So=data[0];

drift[0]=So;

int k=1;

monte=m.simValuep(gmean,gsd,So,time); // Each trading day is 1/223
which is 0.00448

try{
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PrintWriter pw=new PrintWriter (new FileWriter("c:\\
exampleIBMExSim3.txt"),true);
PrintWriter w=new PrintWriter (new FileWriter("c:\\
exampleIBMExModellRawA.txt"),true);
PrintWriter dw=new PrintWriter (new FileWriter("c:\\
exampleIBMExModeldriftA.txt"),true);
for (double d2:monte )

drift[k]=(So*(exp(k*t*gmean)));
System.out.println(" Simulated data "+formatter.format(exp(d2))
+"DRIFT POINT MOVEMENT =
"+formatter.format(drift[k-1])+"RAW DATA FROM SOURCE = "+data[k-11]);
pw.println( (exp(d2))+",");
w.println(data[k-1]+",");
dw.println(drift[k-1]+",");
k++;

pw.println(" ");
w.println(" ");
dw.println(" ");

w.close();

pw.close();

dw.close();

} catch(IOException foe) {

System.out.println(foe);

}
}

LisTING 7.6. Computation of Monte Carlo simulations

7.2.2.  Simulation with Monte Carlo

Listing [Z7] shows the class MonteCprices. This class provides methods to
generate simulated stock price movements based on the input parameters, mean,
standard deviation, time and initial stock price.

The class uses two imported classes from package CoreMath; Itoprocess and
Genwiener. These two classes provide the fundamental calculations required to
generate the data based on our random process models.

This class is instantiated with the constructor MonteCprices(int n) This
constructor sets the value for creation of the return array size. The three methods
simValue(), simValuep() and simValueln() provide the basic process handling
functionality. Both simValue() and simValuep() provide a process based on the
discrete model and simValueln() provides a continuos time model. The conve-
nience methods getValuesim(), getValuesimin() and getValuesimp() give access
to the final value of the simulated run.

package FinApps;
import java.util.*;
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import static java.lang.Math.exp;
import static java.lang.Math.log;
import static java.lang.Math.sqgrt;
import CoreMath.Itoprocess;

import CoreMath.Genwiener;

public class MonteCprices {

public MonteCprices() {
}
public MonteCprices(int n)
{
iterations=n;
¥
public double getValuesim()

{

return finalvalue;

¥
public double getValuesimln()

{

return finalvalueln;

}
public double getValuesimp()

{

return finalvaluep;

private int iterations;

private double finalvalue;

private double finalvalueln;

private double finalvaluep;

public double[] simValue(double mean,double sd,double
initialvalue,double time)

double[] simvalues=new double[iterations];

Itoprocess ito=new Itoprocess();

for(int i=0;i<iterations;i++)

{
simvalues[i]=ito.itoValue(mean, sd, time, initialvalue);
initialvalue=initialvalue+simvalues[i];

}

finalvalue=initialvalue;

return simvalues;//returns the changes from period to period
}
public double[] simValueP (double mean,double sd,double

initialvalue,double time)

{

double[] simvalues=new double[iterations];

Itoprocess ito=new Itoprocess();

double change;

for(int i=0;i<iterations;i++)

{simvalues[i]=initialvalue;

change=ito.itovalue(mean, sd, time, initialvalue);
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initialvalue=initialvalue+change;

}

finalvalue=initialvalue;

return simvalues;//returns the new price from period to period
}
public double[] simValueln(double mean,double sd,double

initialvalue,double time)//continuos time

{

double[] simvalues=new double[iterations];

double so=initialvalue;

initialvalue=log(initialvalue);

Genwiener g=new Genwiener();

mean=( (mean-(sd*sd))/2.0);

sd=(sqrt(time)*sd);

for(int i=0;i<iterations;i++)

{simvalues[i]=initialvalue;

double change=g.genWienerproc(mean, time, sd);// period to
//period change

initialvalue=(change+initialvalue);

}

finalvalueln=exp(initialvalue);
return simvalues;//returns the new prices from period to period

LisTING 7.7. Class MonteCprices

Step f
Figure [Z71 shows a simulated run for IBM stock prices. The graph shows that the
simulated price (in this particular run) trajectory quickly runs from the drift line.

Figure Shows that each simulated run differs according to the random
nature of each trajectory.

Figure depicts the variation of empirical price data for IBM stock around
the mean (drift). Once again the simulated run quickly deviates from the mean
line in a random fashion.

Figure [/.10] displays the result of two simulations shown with the empirical
data. In this case the convergence between simulated data and empirical data
is quite striking, with both runs being closely matched to the drift. Although
this graph displays a seductive similarity between the simulated and empirical
data, it is not, in any real sense a ‘better’ series of simulations. The statistical
properties of the stochastic process necessarily involve a random range (within
the normal distribution) of variation around the drift.

Figure [Z1T] exhibits the convergent nature of using multiple runs to obtain a
reasonable approximation for the lognormal process. What needs to be kept in
mind is that any one of the trajectories IS a reasonable path for a stock price
that has a random variation around a trend and is therefore a reasonable model
for determining a simulated value.
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Simulated and Empirical Stock Prices
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FIGURE 7.9. Comparison of empirical and simulated runs.
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IBM simulated data (multiple runs)
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Ficure 7.11. Convergence with multiple runs.

7.3. The Lognormal Property

Stock prices follow a lognormal property, which can be described by:
LS d(,S+m, o) (7.3.1)

Where S, the stock price is at some future time T and S is the current stock
price. The equation shows that the stock price follows a normal distribution of
the natural logarithm of stock prices.

Given the previous discussion of stock prices following a Brownian motion
process, we can derive an equation of the lognormal property in terms of variance
and time as:

1Sy : ¢ (zns+ (m— O;)At, m/E) (7.3.2)

The expected value of the future stock price S, can be computed in terms of
the expected return m being continuously compounded or its instantaneous ()
value. For the former case, an expected value is given by:

E(S;) = Se" T+ (7.3.3)
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For the latter case the expected return is given by:
E(S(p) = Se™! (7.3.4)
In either case the variance is given by:
Var(Sy) = "7 (e — 1) (7.3.5)

If we assume that the changes in stock price over a short time frame exhibit
properties of a normal distribution and define the mean, wAr¢ as the percentage
change in stock price in a time Az, with standard deviation ov/Az. We can derive
the change in stock price as:

% : p(uAr, ov/Ar) (7.3.6)

% is the proportional change in stock price for a short time Ar with wAr¢ the
expected value and variance o>Atr = g+/At. The expression ¢(uAt, o/ At)
denotes the expected value and variance following a normal distribution.

Following from this we can show that
o2
lnSAt — lnSZ (,‘b <(/.L — T)Al, oV Al)

This provides the rearrangement:

J%A P ((M - %Z)At, U\/Kt) (7.3.7)
and
1Sy, : & <zns+ (n— %Z)At, m/E) (7.3.8)

The distinction between continuous and instantaneous time for the mean is
important. The end result will differ. For some situations the results will differ
very significantly and can have an impact on the statutory requirements for
financial reporting, which in some countries is stringent (e.g. Sarbanes Oxley).

The stochastic model for stock prices, 6S/S = wdt + odz, where dz = 5\/K, .
Recall that ¢ is drawn from a standardised normal distribution, & : ¢(0, 1). The
discrete term udt is the expected value of the change in stock price AS/S which
is a proportional return. Thus:

AS/S: p(uA,, a\/xt) Shows that the percentage returns per A, is u, and u
is the instantaneous expected rate of return with variance o>.

For the continuosly compounded rate of return, we can define the annualised
compound rate as 6, so that S, = Se?*’. From the property of natural logarithms:
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Sy, — S = €%, using the natural log, logS,, —log$ = log(e®’) this
gives log(%) = OAt, which is 6 = - log(%). We know from[Z3. 4 this implies:

2

9: ¢(M—%, %) (7.3.9)

So, the continuosly compounded rate of return is normally distributed with mean

—o? .. -

E=7 and standard deviation of \/% The expected rate of return is therefore
2

=

Example 7.2 Probability distribution of stock prices

This example shows the distribution of expected returns based on the lognormal
property of stock prices.
Part A.
Assume that a stock has an initial price of £51.0 and an expected return of 11%
per annum. The stock exhibits volatility of 19% per annum. We wish to know the
distribution of this stock in the next quartrer (3 months). For a 90% confidence
level what is the distribution range of stock prices? What is the probability of
the stock price being at least £53.50?
Part B.
Finally, if the expected rate of return is continuously compounded, what is the
probability of the return over the next year?.

Using we have:

In Syas : b (1n51.0+ (L0124 05, 0.19«/0.25), Which gives us,

In Sy 55 : ¢(3.9318+(0.11 —0.01805)*0.25, 0.19%0.5). Thus the stock price is
distributed normally; [, ,s : (3.9548, 0.095).

The 90% probability is that the stock is within plus/minus 1.28 standard
deviations of its mean value. Therefore,

3.8332 < 1,8,,5 < 4.0764.
This can be written,
B < 5,5 < M = £46.210 < S ,5 < 58.93

In three months there is a 90% probability of the stock price being between
£46.21 and £58.93.

The probability of the stock price being at least £53.50 is calculated by using
the relationship as shown above from[Z.3.9] The cumulative distribution function
(CDF) is then used to calculate the probability of this value. The CDF is used
to provide probabilities of a variable occurring when distributed as a normal
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variate, based on the mean and standard deviation of the sample. Given our
example and using [/.3.9] the parameters are:

2

m:l,,So—l—(/.L—%)t (7.3.10)
sd =0/t (7.3.11)
The CDF of, x, ¢(x) can be computed using the error function as:

o(x) = % [1 terrf (%)} (7.3.12)

Where x is the normalised variable. Recall that a variable ¢ is normalised by
transforming as;

Y= (x—p/o)

Thus our variable x is transformed by
x=(l,(x) —m/sd)

Using our actual data

1 log(53.50) — 3248
go(x)_z |:1+errf( 7 ):|

¢(x) =0.603

The probability of achieving £53.50 is therefore 0.603. This is a 0.26 standard
deviation of the mean (allowing for rounding error) giving an increase of around
£1.31.

The expected rate of return (from 7.3.10) over one year is (assuming a 90%
confidence level) normally distributed with mean (u — "72) and standard deviation
o/+/8t. There is therefore a 90% chance that the return will be between —15.15%
and 33.54%.

Listing [Z.8] shows the code for Example

package FinApps;
import CoreMath.Inversenorm;

public class Examplelognorm_1 {

public Examplelognorm_1() {
}
public static void main(String[] args) {
double[] rangevalues=new double[2];
double[]rets=new double[2];
Inversenorm inv=new Inversenorm();
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double conflevel=inv.InverseNormal(0.90);// get the x factor
//for the chosen
//confidence level
Lnormprice l=new Lnormprice(conflevel);
l.logprice(51.0,53.50,0.11,0.19,0.25);
l.returnrate(0.11,0.19,1.0);
rangevalues=1l.getRange();
rets=1l.getRetrange();
System.out.println("lnormices"+l.getAverage()+"sd=="
+1l.getSd()+"pDF=="+1l.getPdf()+"cdf=="+1.getCdf());
System.out.println(" RANGE low ="+rangevalues[0]
+" HIGHER=="+rangevalues[1l]);

System.out.println(" RET RANGE low ="+rets[0]
+" RET HIGHER=="+rets[1]);

}

LisTING 7.8. Application code for Example 7.2

The code in Listing [Z.2] makes use of class Lnormprice. This class implements
the lognormal and rate of return calculations. The method logprice () is passed
the values from Example[Z2lpart A. The method returnrate() is passed the values
from part B. The object ‘I’ is instantiated by the constructor for Lnormprice
being passed a value conflevel, this being the chosen confidence level.

The numeric value of the variable conflevel is returnd from the object ‘inv’,
this is instantiated from the class Inversenorm which calculates the inverse
CDF (i.e. the value of x which gives probability ¢(x)), ¢(x)~!. The method
InverseNormal() provides the inverse calculation. Class Inversenorm is listed
at the end of this chapter as Listing Al.

Listing [Z.9] shows the class Lnormprice

package FinApps;

import static java.lang.Math.*;
import CoreMath.Csmallnumber;
import BaseStats.Probnorm;
public class Lnormprice {

public Lnormprice() {conflevel=1.0;

}

public Lnormprice(double confidence) {conflevel=confidence;

}

private double conflevel;

private double pdf;

private double cdf;

private double vaverage;

private double vsd;

private double[] range= new double[2];

private double[] retrange=new double[2];

private void setPdf (double pdfvalue) {
pdf=pdfvalue;
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private void setCdf (double cdfvalue)//P(X>x)

{
cdf=cdfvalue;

}

public double getPdf () {
return pdf;

}

public double getCdf () {
return cdf;

}

private void setVaverage(double average) {
vaverage=average;

}

private void setSd(double sd) {
vsd=sd;

}

public double getAverage() {
return vaverage;

}

public double getSd() {
return vsd;

}

public double[] getRange() {
return range;

}

public double[]getRetrange() {
return retrange;

}

public void logprice(double So,double St, double mulog, double

sdlog, double t) {
Probnorm p=new Probnorm();
double meanval=(log(So)+((mulog-(pow(sdlog,2.0)*0.5))*t));
setSd((sdlog*sqrt(t)));
//sets a variance value

setVaverage (meanval);
double sdlevel=(getSd()*conflevel);
range[0]=exp( (getAverage()-sdlevel));
range[l]=exp( (getAverage()+sdlevel));
setCdf (p.ncDisfnc((log(St)-getAverage())/getSd()));
double divisor=0.0;
divisor=(sqrt(2*PI));
divisor=(1.0/(divisor*getSd()*St));

Double testval=new Double(divisor);
divisor= testval.isInfinite()?Csmallnumber.
getSmallnumber():divisor;

setPdf( floorvalue( (exp(-0.5*pow(((log(St)-getAverage())/
getsd()),2)))*divisor));

}
public void returnrate(double exreturn,double volatility,
double time) {
double mean=(exreturn-(pow(volatility,2.0)*0.5));
double sd=(volatility/sqrt(time));

187
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retrange[0]=( (mean-(conflevel*sd))*100.0);
retrange[1l]=( (mean+(conflevel*sd))*100.0);

public double floorvalue(double x) {
return abs(x)<Csmallnumber.getSmallnumber()?Csmallnumber.
getSmallnumber () :x;

}

LisTING 7.9. Computation of lognormal and return rates

Lnormprice consists of two process methods; logprice() and returnrate(). The
first method implements a lognormal distribution calculation following
The mean is available from the convenience method getAverage(), and standard
deviation from the method getSd(). The mean is constructed using the variable
So, which is the initial stock price. The variable St is the target stock price which
is evaluated in relation to the sample mean.

Method returnrate() implements and provides the solution as a range
within the chosen confidence level, which is available as the convenience method
getRetrange().

The CDF is implemented in the argument to method setCdf{), which is

[}

passed a return value from the object ‘p’. Object ‘p’ is instantiated from
the class Probnmorm. This class uses method ncDisfnc() to calculate the
normal CDF.

import package CoreMath;

BaseStats.Probnorm;

import java.util.*;

import static java.lang.Math.*;

public class Inversenorm extends NewtonRaphson{

public Inversenorm() {accuracy(le-9,20);//optimum values for
xup to 5
}

Probnorm p=new Probnorm() ;

private double target=0.0;
public double InverseNormal( double uvalue)//Probability
//between 0 and 1.0

double xval=0.0;

target=uvalue;

if (target==0.5)
return 0.0;

if (uvalue<0.5) {
uvalue=(1l.0-uvalue);
xval=-sqgrt(abs(-1.6*1log(1.0004-pow((1l.0-2.0*uvalue),2))));
return newtraph(xval);

}else{
xval=sqrt(abs(-1.6*1log(1.0004-pow((1.0-2.0*uvalue),2))));}

return newtraph(xval);
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}
public double newtonroot (double rootinput) {

return (target-p.ncDisfnc(rootinput));

}

LisTING 7.10. Class Inversnorm in Package CoreMath

References

Higham, D. J. “An Introduction to Financial Option Valuation Mathematics,” Stochastics

and Computation. Cambridge.
Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer.



8
The Binomial Model

Stock price variations are binomial in a short time period. From the lognormal
property of stock prices it can be seen that the expected value of a stock price
with instantaneous value is as shown in 7.3.1. The equation can be modified
to accommodate a risk neutral environment, where the expected return u is
replaced by the risk free interest rate r. From the observation that the change
in stock price has a variance of S?0*A, we can construct a binomial model of
stock price changes over short time intervals with the following properties.

8.1. Stock Price

A stock is considered over a time frame N. The time frame is split into a series
of very short periods A,. At the end of each time period the stock can rise or
fall in price. This is shown in the diagram below:

p /Su
\>

=

I-p
Sd

The stock price S can rise to Su with probability p and fall down to Sd with
probability (1-p).

The variables we have to deal with are probability p and the amounts u and
d. These parameters are constrained to operate within the lognormal properties
of stock prices. From 7.3.1 we see the stock value can be given as:

Se™ = pSu+ (1 —p)Sd (8.1.1)
From the definition of variance as

S?0°A, = E(pS*u’ + (1 = p)S*d®) — [E(S*(pu+ (1 = p)d)*)]

191
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This reduces to:
o*A, = pu? + (1 = p)d® — [pu+ (1 - p)d’ (8.1.2)

Both 7.3.3 and 7.3.4 and the identity that u*d = 1 provide the constraints for
calculating p, u and d.

8.1.1. Cox Ross Rubinstein (CRR) Model

The conditions provide for parameters with the following values:

et —d
= 8.1.3
p=-—— (8.1.3)
u=e VA (8.1.4)
d=e"V (8.1.5)
a=e"™ (8.1.6)

In the Cox, Ross and Rubinstein (CRR) model it is also a condition to include
the constraint of u = eﬁ' = = 5 in the calculation of each node in the binomial
tree. The equations are accurate for very small values of A,. Because p is a
value between 0 and 1, it can be seen as a probability measure, the value y is
an expected yield term for the asset. In a risk free environment the return from
stock is the risk free rate r, therefore y is considered to be zero. The variable a
is termed the growth factor.

For an arbitrary value of 8, parameters are more accurately described in terms
of the lognormal property for the mean and variance of stock prices. In this case
the appropriate calculations are:

n=pu+(1-p)d (8.1.7)
o =pu* + (1 = p)d* — u? (8.1.8)

From the lognormal property and 7.3.1, 7.3.2. We get:

w=e" (8.1.9)
o =pu2(e” % — 1) (8.1.10)
2 2 1 2 2 1 2_4 2
L WD+ 1) —4u 8.1.11)
2
—d
p="1 (8.1.12)
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8.1.2. Binomial Tree

The binomial model involves the construction of a tree with each node repre-
senting a movement in stock price. Figure shows a binomial tree for four
time periods. There are five possible stock prices at the end of four time periods.
At 1 A, we have two possibilities, Su, Sd. At 2A, we have three possible prices
(from four movements), Su? Sd? S. S represents a convergence of Sud and Sdu,
this reduces to S. From the identity u = ﬁ each node is evaluated, so that the
movement from Sd’u = Sd *Tl,*” = Sd. In general for any time iA, there are i+ 1
possible prices.

If we denote the time to maturity for a stock as N this is divided into A,

discrete intervals the stock price takes on a range of values given as:
Su'd™’ (8.1.13)

From the binomial coefficient (;’) we can find the number of possible ways
to achieve j successes from n trials where j = 0...n. Thus for n =4,j=1
there are 4 possibilities. u,d,d,dy =d,d,dsu, = d,u,d,dy =d,d,u,d,. For n =
4, j =2 there are 6. In general, the binomial cumulative distribution defines
the probability of achieving a target stock price. In the case of determining the

cumulative probability of achieving a value at least equal to a particular node,

‘14

I3

2p)

(<

J1

FIGURE 8.1. Binomial tree for five time periods.
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FIGURE 8.2. Binomial tree for Example 8.0.

the following formula is used:

> (5)ra-p (8.1.14)

j=n

Where (j) is the binomial coefficient with trials i and j is the node within trial i.

Example 8.0 A stock price follows a binomial pattern, where the probability
of an upward movement is 0.5 and a downward movement of 0.5. Each step has
a movement of $2.0 from the starting price. This is shown in Figure 8.2.

What is the probability of the end price being $92.0, up to $96.0 and $104.0
or less at the end of 4 time periods?
Example 8.0:

The probability of achieving a stock price of $92.0 is 0.0625. In the case of
n=4, j=1.The probability of achieving $96.0 is 0.25 and the cumulative proba-
bility is 0.3125 of achieving $96.0 or less.

The probability of achieving $104.0 or less is

() % (0.5)* + (3) % (0.5)* + (3) % (0.5)* + (%) x (0.5)* = 0.9375. This is
achieved using 8.1.14.

The probabilities associated with a particular node are denoted by the Binomial
Distribution. This is represented as:

n

bk; n, p) = (k)p"(l -p)" = <k,(nn—lk),) pr—p)"*
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Where b(k; n, p) is the probability of achieving k successes in n trials (another
way of saying k tails in the tossing of a fair coin n times) for the probability p
of achieving k.

Figure B3] shows the path of probabilities on the binomial tree. To reach
node H we need two shortest paths, which give $100-$102-$100-$98 and
$100-$98-$96-$98. Both routes are given by (0.5)*. This sums to 0.25. Similarly
for node G the two shortest paths give an associated probability (0.5)* this
sums to 0.25. If we sum all of the node probabilities for a given column (e.g.
$106+$102+$98+$94) it will cumulate to 1.0.

Example 8.1

A stock has an initial price of £50.0. The risk-free rate is 6% per annum and the
stock has an annual volatility of 20%. Show the price distribution for the last
month as a binomial tree. Assuming growth is over a complete year.

This example requires the generation of binomial parameters to use in calcu-
lating the values of stock prices at each node in the tree.

U= 60420v040833 =1.059

d= e*OA20v0A0833 =0.994

a= 6‘(O.06—0.0)0.0833 = 1.005

The variable p is therefore p = =4 = L0809 _ () 529

u—d 1.059-0.994
0.0625 $108

$102. 0.25 / $102 Node G
$100 >1oo 0.125 $100
$98 \ v
0.125 $98
\ / Node H
D=0.5 =025
$96 \ $96
0.25 594
0.125 \

FiGURE 8.3. Binomial with associated probabilities.
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TABLE 8.1. Prices for each node
(0 to 12) for the last month in the
12 month sequence

PRICE AT EACH NODE:
25.012
28.072
31.508
35.364
39.691
44.548
50.00
56.119
62.986
70.694
79.345
89.055
99.953

From 8.1.14 the stock price will take a value: S*1.059"*0.994~/. Where i is
the step and j is the node within each step of the tree. Table [B.] below shows
the prices for each node at the year end (12th step)

Example 8.2
A stock has an initial price of $32.50. If the risk free rate is 10% and the stock
has a volatility of 30%. Show the price and probability distribution for the end
of month 10.

For this example the process for stock price distribution is the same as in

Example 8.1. The probability distribution is given by:

b(k;n, p) = (Z)Pk(l —p)*

The prices for all nodes at the 10th month together with the associated proba-
bilities at each node are shown in Table B2

The code for Examples 8.1 and 8.2 are shown in Listings 8] and B2 respec-
tively.

package FinApps;
import java.text.*;
public class Example_8_1 {

public Example_8_1() {

}

public static void main(String[] args) {
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(2);
double[] pricetree=new double[13];
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TABLE 8.2. Price and proba-
bility values for Binomial tree
on month 10

Probability Price Sum of P

0.001 13.673 0.001
0.006 16.258 0.007
0.031 19.331 0.038
0.093 22.986 0.132
0.182 27.332 0.313
0.243 32.50 0.556
0.225 38.645 0.781
0.143 45.951 0.924
0.06 54.639 0.984
0.015 64.97 0.998
0.002 77.254 1.00

Binomparams bp=new Binomparams() ;
bp.binomodel(0.0833,0.06,0.20,0.0);
Binomprice b=new Binomprice(bp.getU(),bp.getD(),bp.getP());
System.out.printIn("Parameter Values are:"
+"Up :"+formatter.format (bp.getU())
+" Down :"+formatter.format (bp.getD())
+" P :"+formatter.format (bp.getP())
+ "Growth :"+formatter.format (bp.getG()));
pricetree=b.binomTprice(12,12,50.0);
System.out.printIn(" PRICE AT EACH NODE :");
for(double prices:pricetree) {

System.out.printIn(formatter.format(prices));

LisTING 8.1. Application code for Example 8.1

package FinApps;

import static java.lang.Math.*;
import java.text.*;

public class Example {

public Example() {

}

public static void main(String[] args) {
double[] [[probprices=new double[11][2];
NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(2);
Binomparams bp=new Binomparams( ) ;
bp.binomodel (0.0833,0.10,0.30,0.0);
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Binomprice b=new Binomprice (bp.getU(),bp.getD(),bp.getP());
//Binomprice b=new Binomprice(1.5,0.5,0.70);
//probprices=b.binodevVals(5,4,50.0);
probprices=b.binodevals(10,11,32.50);
double summer=0.0;
System.out.printIn(" PROBABILITY PRICE SUMof P");
for(int i=0;i<probprices.length;i++) {
summer+=(exp (probprices[i][0]));
System.out.printIn(" "+formatter.format
(exp(probprices[i][0]))+"
"+formatter.format (exp(probprices[i][1]))+" "+formatter.
format (+summer) ) ;

LisTING 8.2. Application code for Example 8.2

The class Binomparams is shown in Listing B3] This class computes the basic
parameters from equations

A,
pP= % u= ea'\/z s d= eia-\/z ,a= e(r_«V)Af
u— )

package FinApps;

import static java.lang.Math.*;

import static CoreMath.Csmallnumber. *;
public class Binomparams {

public Binomparams () {

}

private double p;

private double u;

private double d;

private double g;

private void setU(double uval) {

u=uval;

}

private void setD(double dval) {
d=dval;

+

private void setP(double pval) {
p=pval;

}

private void setG(double gval) {
g=gval;

}

public double getU() {
return u;
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public double getD() {
return d;

}

public double getP () {
return p;

}

public double getG() {
return g;

}

public void binomodel (double time,double rate, double sigma,
double yield)//time is as fraction of the rate period

{
setG(exp((rate-yield)*time));
setU(exp(sigma*sqrt(time)));
setD(floorvalue(exp(-sigma*sqrt(time))));
setP(floorvalue((getG()-getD())/(getU()-getD())));
}

private double floorvalue(double x) {
return abs(x)<getSmallnumber()?getSmallnumber():x;

LisTING 8.3. Computation of Cox, Ross and Rubinstein parameters

Class Binomprice is responsible for the computation of the binomial tree with
associated probabilities. The imported CoreMath classes are listed in the Appendix.

package FinApps;

import static CoreMath.Function.*;
import CoreMath.Ibeta.*;

import static java.lang.Math.*;
public class Binomprice {

public Binomprice() {

}

public Binomprice(double u, double d, double p) {
this.upvalue=u;
this.downvalue=d;
this.prob=p;

}

private double upvalue=0.0;

private double downvalue=0.0;

private double prob=0.0;

public double[] binomprob(int n, int nodes, int k,double probability)
{//altering nodes fromn goes from 0 to node,
k is starting point from 0

double[]nodeprobs=new double[nodes-(k-1)1];
nodeprobs[0]=(log(((binom(n,k)*pow(probability, k))
*pow( (l.0-probability), (n-k)))));
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int h=1;

for (int j=k+1;j<(nodes+1);j++)// from 1l to k inclusive....
//Does the strip and each node in it

nodeprobs[h]=(nodeprobs[h-1]+(log(probability* (n-j+1))
-log((l-probability)*j)));

h++;
}
return nodeprobs;
}
public double[] binomTprice(int n,int nodes,int h,double price) {
double stripsum=0.0;
double[]nodeprices=new double[nodes-(h-1)1];
int k=0;

for (int j=h;j<(nodes+1);j++)// fromh to nodes inclusive....
//Does the strip n and each node in it

nodeprices[k]=(price*pow(upvalue, j)*pow(downvalue, (n-j)));

k++;

}

return nodeprices;

}
public double[][] binodeVals (int n,int nodes,int h,double price) {

int k=0;
double[] [] nodeval=new double[nodes-(h-1)][2];

nodeval[k][0]=log(((binom(n,h)*pow(prob,h))
*pow((1.0-prob), (n-h))));
nodeval[k][1l]=(log(price*pow(upvalue,h))+log(pow
(downvalue, (n-h))));
k=1;
for (int j=h+1;j<(nodes+1);j++)// from 1l to k inclusive....
//Does the strip and each node in it

{
nodeval[k][0]=(nodeval[k-1][0]+(log(prob*(n-j+1))
-log((1l-prob)*j)));
nodeval[k][1l]=(log(price*pow(upvalue,j))
+log(pow(downvalue, (n-j))));
k++;
}

return nodeval;

}

public double cumbinomDistL (double k, double n, double x)
{//Does the basic probability for that node
CoreMath.Ibeta m= new CoreMath.Ibeta();
double inverseprob;
inverseprob=m.betai(n-k,k+1.0, 1.0-x);
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// For direct computation
return inverseprob;

¥

public double cumbinomDist( double k, double n, double x) {
CoreMath.Ibeta j= new CoreMath.Ibeta();
double cumprob;
cumprob=j.betai(k, (n-k+1.0), x);

return cumprob;

LisTING 8.4. Computation of the Binomial Tree

8.2. Trees for American & European Pricing

The binomial tree can be used to price European and some American options.
The price of an American option is complicated by the ability to exercise at any
time prior to expiration. Recall from our discussion of options that the payoff
from an American option is max((x — s),0) at any time during the life of the
option. If we model the option life as a binomial tree, with each node being
evaluated as the maximum payoff, the model will show optimum exercise points.

Using the same terminology as the examples for stock price evolution. The
payoff for an option can be represented as:

max (0, (X — Syu'd" 7)) (8.2.1)

where X is the option strike price.

Since we can now represent each node of the tree as the payoff from that
node. The tree effectively represents the lifetime value of each time step. The
basic CRI tree method for constructing the values is used to store the end node
values, the standard backward induction method for constructing prices towards
the staring value are then used to construct a full tree of option prices.

Using 8.2.1 to construct the node prices and the associated probability of
reaching that node as the up and down probabilities of the nodes ahead.

The value of the end nodes is first constructed by 8.2.1, the preceding nodes
are then constructed by:

p;,; = max(max (X — Su'd’™",0), [P Pirii +(1=p)" Py ] (8.2.2)
By constructing the binomial tree with these values, each node accounts for all

of the possible prior exercise points. Listing 3] gives the implementation of the
American tree class.
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package FinApps;
public class Amertreeop {

public Amertreeop(double time,double rate,double yield,
double volatility) {
t=time;
r=rate;
g=yield;
sigma=volatility;
}
private double t;
private double r;
private double q;
private double sigma;

public double amerCall(int n, int nodes, int h, double price,
double strike)

double[] pricetree=new double[n+1];

Binomparams bp=new Binomparams() ;

t=(t/n);

bp.binomodel(t,r,sigma,q);

Binomprice b=new Binomprice(bp.getU(),bp.getD(),bp.getP(),
t,r,1);// 1 is American

pricetree=b.binomTprice(n,nodes,h,price,strike,1l);// non zero
//is acal

double amps =pricetree[0];
return amps;

}

public double amerPut(int n, int nodes, int h, double price,
double strike)

double[] pricetree=new double[n+1];

Binomparams bp=new Binomparams();

t=(t/n);

bp.binomodel(t,r,sigma,q);

Binomprice b=new Binomprice(bp.getU(),bp.getD(),bp.getP(),
t,r,1); // 1is American

pricetree=b.binomTprice(n,nodes, h,price,strike,0);
// zero is a put

return pricetree[0];

LisTING 8.5. Computation of an American Tree

Example 8.4 Valuing an American option

Consider an American opton on a stock with six months to expiry. The stock
price is $110.0, the strike price is $100.0. The risk free rate is 7% and the option
volatility is 27%. Evaluate the put option price with five time steps over the
option lifetime.
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The input parameters are: S=110, X=100, T=0.5, r=0.07, y=0.0, volatility =
0.27. Time steps (n) = 5. The values for nodes= n, and we wish to evaluate the
whole tree so start from h=0.

The put value = $3.054. Listing shows the code for implementing
Example 8.4.

package FinApps;
import java.text.*;
public class Example_8_4 {

public Example_8_4() {
}
public static void main(String[] args) {

NumberFormat formatter=NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(3);
formatter.setMinimumFractionDigits(2);
Amertreeop e=new Amertreeop(0.5,0.07,0.00,0.28);
double price=e.amerPut(5,5,0,110.0,100.0);
System.out.printIn(" Put price=="+price);

LisTING 8.6. Application code for Example 8.4

Reference

Lyuu Yuh-Dah (2002). Financial Engineering & Computation Principle, Mathematics,
Algorithms. Cambridge University Press.
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Analytical Option Pricing Methods

9.1. Black-Scholes-Merton

The Black-Scholes and [Mertod (@) (more usually refered to as the shortened
‘Black Scholes’) model of option pricing is based on the risk free hedge of a
portfolio consisting of the underlying asset and cash.

The model uses the lognormal property of stock prices and assumes a
Geometric Brownian Motion process.

The Black Scholes equation is of the form:

dS=S udt+S o dz (9.1.1)

Recall this is following an Ito process.
If we define @ as the price of a derivative which is contingent on the variable
S, the price will be some function of S and ¢.

W b 18D I
db=|—pS+—+-—0’5* ) dt+ —0Sd 9.1.2
(as“ T T ) + s T ©-12)

Also recall that the discrete versions are given as:

AS =At uS+Azo S (9.1.3)
rp= (22 S+a®+132® ’s? At—i—a(b S A (9.1.4)
“\as™ Ty T2’ as 77 °¢ -

Where the A S and ® are changes in the stock price within a short period of
time At.

Following from Ito’s lemma the underlying process for S and & are the
same, namely the uncertainty associated with the Wiener process (A®, AS). The
uncertainty affects both S and ® as the stock price movement is subject to a
random fluctuation (Az = ev/At).

The Black Scholes equation is satisfied by the price of a derivative which
is dependent on the underlying non dividend paying stock. Given that in a
very short (instantaneous) time the stock price has perfect correlation with the

205
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derivative price, positions in the stock and derivative can be established so that
the return is the riskless rate. Riskless because the source of uncertainty (risk)
is the same.

By constructing a portfolio which holds appropriate positions in a derivative
and its underlying stock, which eliminates the Winer process we can build the
riskless portfolio. By going short the derivative and long a stock amount %S .
The portfolio value is:

ID
[T=-®+=:s (9.1.5)

The value of this portfolio is only true for small time changes. The change in
value for change in time is given by:

oD
AH =—-Ad+ —AS (9.1.6)

a8

D b 1P r e D P
This gives us.

P 1P
All=(—-——=—025%) At 9.1.7
I ( o 209527 ) ©-17)

The rate of return for this portfolio (assuming an arbitrage free environment) is
the short term riskless rate. Therefore in a short time:

AT =r]]A: (9.1.8)

By substitution from ,B.1.6land
b 10*d P
(—— - -—0232> Ar=r (cp_ 53) Al

Giving:

=20 5001 ZSzach (9.1.9)
MP=-—4+r—+= — L
o T 277 s

This is the Black Scholes differential equation. There are a range of solutions
to the equation which depend on the particular derivative using the underlying
stock variable. If we have a tradeable derivative then it will be possible to solve
it using the Black Scholes equation. If we cannot solve the equation using Black
scholes then there will be arbitrage opportunities from the derivative.
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If we consider an example from forward contracts. The value of a forward
contract is given as:

f=8—ke "

Where S is the stock price , k is the delivery price and r the risk free rate. If we
consider parameters: S = $905.80, k = $919.7328, r = 5% and time is 5 months
to maturity (¢t = 0.41665). The value of the contract is $5.00.

Substituting the values of the derivative into the Black Scholes equation
we get:

fo1 08

af P
rf_a—t(S,t)+rS£+§0' N a—Sz(S,t)

This is the partial differential equation that the price of a forward contract
satisfies.

The first term becomes —rke " 7™) = —0.05*919.7628%¢~0-057041665 = The
second term becomes 1.0 and the third term 0.0. This evaluates to:
—45.04 + 45.29 = 0.25. Looking at rf = 0.05*5.0 = 0.25. This shows that the
equation is satisfied.

The only variables considered in the Black Scholes equation are stock price,
volatility, time, forward price and risk free rate. There are no risk prefer-
ences such as expected return or probability of return. The Black Scholes
model depends on the investor having no risk preferences. If it is assumed that
investors are risk neutral, then we can assume that the expected return is the risk
free rate.

9.2. Pricing with Black-Scholes

The basic stock option model allows pricing of an option where the underlying
asset pays no dividend.

The prices of a basic European call and put option which will satisfy the
Black-Scholes equation are given by:

c=SN(d,)— Xe ""N(d,) (9.2.1)
p=Xe""N(—d,)— SN(—d,) (9.2.2)
Where:
_ In($/X)+(r+0°/2)T
d, = o~ (9.2.3)

d, = In(8/X) +(r—a?/)T =d,—ovT

L= e (9.2.4)
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S = Stock Price

X = Strike Price of the option

R = Risk free rate

T = Time to expiration (annual)

o = Underling asset volatility (from relative price change)

The function N(x) is the cumulative normal distribution function.
The formulae for call and put options can be deduced intuitively from the
basic process of a European call. Recall that the expected value is

E[max (S — X, 0)]
A European call option at expiration will have its expected value discounted at
the risk free rate so,

c=e"TE.

The expected return can be interpreted in terms of the probability of the stock
price being greater than the strike price at maturity, or zero. The second term is
the probability of the strike price being paid. This can be written:

c = e T[SN(d,)e'T — XN(d,)] (9.2.5)
9.2.1. Pricing without Dividends
Example 9.0 EUROPEAN OPTION WITHOUT DIVIDENDS

A European call option has an underlying stock with a current price of $ 55.0.
The strike price is $60.0. There is three months to expiry. The risk free interest
rate is 9% and the volatility is 26%.

_In(S/X)+(r+0%/2)T _ 1n(55/60) + (0.09+0.267/2)0.25

d
: oT 0.26+/0.25
n(S/X) + (r— 02/2)T
g, = MO /DT T 0412— 0265035

o T
d, =—0.412. d, = —0.542.

N (d,) =0.340. N(d,) = 0.293.
c=SN(d,)—Xe "N (d,) =55N(d,) — 60e " >N (d,) =1.65
p=Xe TN (=d,)— SN (—d,) = 60e """ N (—d,) — 55N (—d,) = 4.767

Thus the price of a European call is $1.65. The stock price would need to
increase by $6.65 to break even (ignoring time value of money). The price of the
European put is $4.767; this requires no change in the stock price to be slightly
in the money.
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9.2.2. Effects of Dividends

Dividends payable on the underlying stock of an option can be split into short
term and long term. The short term dividends are usually regarded as cash
dividends where the lump sum payments are regular and known. For long
term options the dividend is expressed as a dividend yield. The dividend on
a stock is generally assumed to be paid on the ex-dividend date. The amount
by which the stock price reduces is not always the same as the dividend cash
payment; it is sometimes a percentage range of the dividend to discount from the
stock value.

A European option can be priced based on the two components of the stock
price when dividends are expected. The first component is the riskless aspect
of known dividend payments over time. This component is discounted at the
riskless rate over the time periods for which the dividends are paid. The risky
component is the normal risk associated with the stock price, in the Black Scholes
model with the associated volatility.

Example 9.1 EUROPEAN OPTION WITH DIVIDENDS

Consider a European call option with payments due in n periods. The stock price
will take into account the discounted cash flows for each period:

_ —rt —rt —rt,
So=8—Pe"" —Pe ™ ... —Pe .

Where P is the dividend payment for periods 1...n and t is the time
period as a fraction of the annual time. The interest rate is the annual risk
free value.

Take the dividend payments to be two five and eight months. The current
stock price is £70, the strike price is £66. The time to expiration is 10 months,
with the risk free rate being 7% and volatility of 13%. A dividend of £2.0 is
paid on each due date.

The stock price, discounted will be :

700 _ (2.06—0.1666*0.07 + 2.06_0‘1466*0‘07 + 2.08—0.6666*0.07)
70 — (1.976 + 1.979 + 1.908) = 64.137.

Using 0.2.3] and 0.2.4]
In(64.137/66.0) 4 (0.07 4 0.132/2)0.833
d, = =0.309
0.13+/0.833
dy=d, —o~T =0.190
N(d,) =0.621
N(d,) =0.575

c=64.137"N (d,) — 66 " O83 N (d,) = 4.020.
p =66 "TO8BN (_d,) —64.137N (—d,) =3.519
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The call price for this option is £4.020 and the put is £3.519. Once the dividend
payments have been discounted from stock prices, the basic Black Scholes
formulae apply.

9.2.3. Options Paying a Yield

There are two choices available in pricing an option providing a known dividend
yield. Since paying a dividend causes the stock price to reduce by an amount
equivalent to the yield rate.

If there is a dividend yield q, the stock price grows from S,_, to S,_, at time 7.
This value incorporates the discount of the stock price at the yield rate. If the
stock pays no dividend the stock would grow at a greater rate S,_,e?". Therefore
we can view the stock price growth from either starting at S, including the
growth rate g, or starting at Sye 7, paying no dividend. The Black-Scholes-
Merton model incorporates the yield adjustment to the basic Black Scholes model
by taking the stock price as one providing no dividend. The current stock price
is then adjusted from S, to S,e~9".

By adopting a convention of reducing the stock price to accommodate known
yield, we have an alteration to the bounds for put call parity. The lower bounds
on a put are now p = (Xe™'T — Sye~") and @22 becomes

p>max(Xe " —S,e7 1", 0) (9.2.6)

Similarly the lower bounds for a call become ¢ = (Sye ¥ — Xe™) and Q.21
becomes

¢ > max(Spe " — Xe™'", 0) (9.2.7)

Put call parity is then represented as:
c+Xe T =p+Sye " (9.2.8)

The formulas for call and put are then:

c=Sye " N(d,) — Xe " N(d,) (9.2.9)
p=Xe ""N(—d,)— S,e " N(—d,) (9.2.10)
—q 2 _ 2
d, = In(Sye T/)((T)\-/Ff(r+a' /)T _ 1n(S/X)+fTr\/Tq+U /2)T' 92.11)
Spe~ " S
(Recall that In( 0; )= ln(YO) —q7).

g nS/X)+(r—g—0*/T _ d —oJT (9.2.12)

: o T
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Equations 9.26 and 9.27 fit into the Black Scholes differential equation as:

L

af af
=——(r—q)S—=+ - 2.1
rf py (r—¢q)8 7S + 20' S 752 (9.2.13)

Example 9.2 EUROPEAN OPTION WITH YIELD

A European put option has 6 months to maturity. The stock price is $102.0 with
a strike price of $96.0,volatility of 18%, yield of 4%. The risk free rate is 10%.
Using the adjusted stock values:

_ In(Sy/X)+ (r—q+0%/2)T

d,

o T
1n(102.0/96.0) + (0.10 — 0.04 +0.182/2)0.5
4, = n102:0/96.0) + +O0187/2)05 _ ) 6826
0.180.5
do— n(Sy/X)+(r—q—0?/2)T
T o T
1n(102.0/96.0) + (0.10 — 0.04 — 0.182/2)0.5
d, =
0.18/0.5

—d, — T = 0.6826—0.18V0.5 = 0.555
The put value is therefore p = Xe ™" N(—d,) — Sye~ 7 N(—d,)

p = 96.0e" 170 N(—0.555) — 102.0e %03 N(—0.6826) = 0.8227

9.2.4. Stock Index Options

We have already looked at index trading through the use of forward contracts.
Stock indices are also traded as options on the major markets. The CBOE trades
options on the Dow Jones (DJX), which is an index on the industrial average.
It also trades the S&P 500 (SPX), Nasdaq 100 (NDX) amongst others.Typically
an index contract is 100 times the quoted closing index. The options have cash
settlement. The CBOE trade LEAPS which are ‘long- term equity anticipation
securities’, these can have maturities for up to three years.

The stock which underlies the particular index will pay dividends on the
ex-dividened date. The various international markets have different convention
dates so calculations have to be adjusted to the domain. In the USA ex-dividened
dates ‘typically’ occur in the first of the month for February, May, August and
November. The yield is averaged for the underlying stock and is used to construct
the g value.

The lower bounds for index options are the same as those for trading known
dividend yields, so and apply. Equations and are used to
value index options.
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Example 9.3 VALUATION OF STOCK INDICES

A European call on the S&P 500 is 3 months from maturity. The index is $975.
The risk free rate is 9% and the index volatility is 22%. Dividend yields of
0.2%, 0.2% and 0.25% are expected over the next 3 months. The exercise price
is $940. The total yield estimate over the option life is 0.65%; this is 2.6% per
annum.

With input parameters:

Sy =975,X=940,0=0.22,T =0.25,r =0.09, ¢ = 0.026

Gives:
d, =0.5327
d, =0.4227
N(d,) =0.702
N(d,) =0.663
¢ =70.83.

The contract cost is $7,830.0.

9.2.5. Options on Futures

The Black (1976) formula is an adjustment to the basic Black Scholes formula.
It is used to price a European futures option based on the contract price F. The
Black-76 model can also used to price bond options in the interest rate market.
The basic assumption is that the futures price follows a lognormal process.
This is the same underlying assumption used in pricing stock options. This
allows us to use the same formula with the spot price being replaced by the
forward price.

The call option on an underlying future can be described in terms of a stock
providing a continuous dividend yield {0.2.91and 0.2.10), with the dividend yield
q being replaced by r and S by F. This is given as:

c=Fe "N(x) — Xe "N(x — /1) (9.2.14)
p=Xe "N(—x+0/t) — Fe""N(—x) (9.2.15)

With

. (ln(F/X)+ (0’2/2)1‘)
= =

In terms of our previous calculation of d, and d,:

¢ = e "(FN(d,) — XN(d,)) (9.2.16)
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The put option is:
p=e¢"(XN(—d,) — FN(—d,)) (9.2.17)

Where
_In(Fy/X)+ (0¥/D)T
= o~

_In(Fy/X)— (YT
= T =d, ovT

d,

d;

Example 9.4 VALUATION OF FUTURES OPTION

A European option on Brent blend has 6 months to expiry. The futures price is
$21.0. The exercise price is $21.0. The risk free rate is 10%, the futures volatility
is 27%.

d - In(21.0/21.0) +0.10%80.50,/2
0.10/0.50
dy=d, —ovT =0.0954 —0.27+/0.50 = —0.0954
N(d,) = 0.5380, N(d,) = 0.4619
p=e 00001 0*N(—d,) —21.0N(—d,)) = $1.519
c=e "190021.0*N(d,) —21.0"N(d,)) = $1.519

= 0.0954

9.2.6. Currency Options

The Merton model described earlier can be used to value currency options. The
modified model is based on the changes attributed to Garman & Kohlhagen
(1983).

The Merton model used a Black Scholes base model with modifications
to include a known dividend yield. [Garman and Kohlhager (1983) further
developed this model to value currency options, where the yield variable is
replaced by the risk free rate of the foreign currency.

Recall that a foreign currency can be regarded as a stock which pays a yield
equivalent to the risk free rate of the country of the currency (r;). The strike
price of the option is paid a yield at the national, risk free rate of the trade. The
bounds for a put and call option are therefore the same as in and
respectively. The stock value, is in this instance the spot exchange rate. The
bounds are:

p > max(Xe T —S,e"T, 0) for the put option and ¢ = (Sye™"*T — Xe™'T) for
the call option.
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The pricing formulas are:

c=S8e """ N(d,) — Xe " N(d,) (9.2.18)

p=Xe ""N(—d,) — Se"""N(—d,) (9.2.19)

From the observation that the forward rate for a currency with domestic rate r
and foreign spot rate r, for a maturity T is given by

FO — Soe(r—rf)T

The put and call can be represented as:

p=e"T(XN(—d,) — F,N(—d,)) (9.2.20)
c=e"T(F,N(d,) — XN(d,)) (9.2.21)
Where
g In(F,/X)+ (a%/2)T
1 0'\/7
_ In(Fy/X)—(a?/2)T 3
d, = - =d, —oJT

The alternative representation using the direct computation in terms of
Soe" T is:

g In(So/X)+ (r—ry+0°/2)T
1= 0'\/7

g In(Sy/X)+ (r—r;—a?*/2)T
2 O'ﬁ

Example 9.5 VALUATION OF CURRENCY OPTION

=d|—a'\/7

A European call on the € has six months to expiry. The $US to € exchange rate
is 1.206. The strike is 1.240. The US risk free rate is 4.28%, the euro rate is 3%.
The volatility is 13% per annum.

, _ In(1.206/1240) +(0.0428 — 0.03+0.13?/2)0.5

—0.2896
! 0.134/0.5

. _ In(1.206/1.240) +(0.0428 —0.03 - 0.13*/2)0.5 _

d,— T =0.1977
? 0.13/0.5 '



9.2. Pricing with Black-Scholes 215

N(d,) = 0.6139
N(d,) = 0.5783

Using, ¢ = Se """ N(d,) — Xe " N(d,)
¢ = 1.206e" "% N(d,) — 1.240e %03 N(d,) = 0.0600

The code implementing methods to deal with the calculation of Black Scholes
models for European options is in class Blackscholecp. This class is listed in
full at the end of Chapter [[0}

Listing Shows the code to run each of the Examples 9.0-9.5

package FinApps;
public class Example_9Bschole {

/** Creates a new instance of Example_1l4Bschole */
public Example_9Bschole() {
}
public static void main(String[] args) {
Blackscholecp b=new Blackscholecp(0.09);
b.bscholEprice(55.0,60.0,0.26,0.25,0.09);
*/
/* Example 9.1 */
/* Dividend = 2/12+5/12+8/12
*Stock price=70-(1.976+1.979+1.908)=64.137
Blackscholecp b=new Blackscholecp(0.07);
b.bscholEprice(64.137,66.0,0.13,0.833,0.07);
*/
/* Example 9.2
Blackscholecp b=new Blackscholecp(0.04);
b.bscholEprice(102.0,96.0,0.18,0.50,0.10);

*/
/*Example 9.3

*g=0.2+0.2+0.25=0.65 *4=annual=2.6%==0.026
Blackscholecp b=new Blackscholecp(0.026);
b.bscholEprice(975.0,940.0,0.22,0.25,0.09);

*/
/*Example 9.4

*

* Blackscholecp b=new Blackscholecp(-0.1);

* b.bscholEprice(21.0,21.0,0.27,0.6,0.10);

*

*/

/*Example 9.5

*/
Blackscholecp b=new Blackscholecp(0.03);
b.bscholEprice(1.26,1.24,0.13,0.50,0.0428);
double c=b.getCalle();
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double put=b.getPute();
System.out.println("CALL == "+c+" PUT == "+put);

LisTING 9.1. Application code for Examples 9.0 to 9.5

9.3. Analytical Approximations for American Options

An American call option should never be exercised early if there are no dividend
payments.It has been shown that immediately prioir to the final ex-dividend date
is the most likely time for early exercise.

For an American put option it is often optimal to exercise prior to expiration.
Any time that a put option is deep in the money, the option should be exercised.
Because an American put can be optimally exercised early it always has a greater
value than the corresponding European option.

American options can be priced using numerical procedures such as
Binomial trees etc, the analytical models of the previous chapter are in
general not applicable. However analytical approximations have been developed
which give reasonably satisfactory results. These analytical approximations are
based on quadrature methods or generalized curve fitting techiniques. The
methods therefore tend to involve a series of fixed co-factors in forming
equations.

9.3.1. Roll Geske Whaley (RGW) Approximation
The Roll [Geske & Whaleyl (1981]) approximation is based on a Black Schole’s

model where the stock price is modified to take account of known dividends.
This approach is reasonable, in the short term where the amount of a dividend
can be known with a degree of certainty . For longer terms to dividend payments,
models based on percentage dividends offer better results.

When considering an option price the dividends can be viewed as the ‘riskless’
component, combined with the ‘risky’ component of stock price and volatility.
A basic Black model for estimating an American call is to price the option
once, using the discounted stock price; S = S, — De™"», where the dividend
is discounted to the ex-dividend date. The option is then priced as a normal
European. The highest of the option prices gives the American approximation.
The RGW model refines this approach to take account of a single dividend
payment and uses the approximated price which corresponds to the risky period
(T —1t) of the option life. An iterative procedure is needed to obtain this critical
stock price.
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If the dividend is less than or equal to the discounted strike for the risky period
then exercise is not optimal. So, if;

D<X(1—e )

Then the option is priced at the European price with the stock price being
adjusted to:

S=S,—De .

The RGW formula has the following form: (9.3.1)

t
c=(S—De ")N(b))+ (S —De " )M (al, —b; ?)

t
—Xe "M (az, —by; _\/;) — (X —D)e " N(b,)

Where the variables are:

o= ME=DY X+ (/DT

| 2 (9.3.2)
b In((S = De™)/ib) + (r +0*/2)t. b, = b, — /i (9.3.3)
o/t

N(d) is the cumulative normal distribution and M(a, b; p) is the cumulative
bivariate normal distribution with limits a, b and correlation p. The term ib is
the critical ex-dividend stock price which iteratively solves:

c(ib,X,T—1)=ib+D—X =91.245 (9.3.4)

Example 9.6

Consider an American call option on a stock which is due to pay a dividend of
$4.50 in three months. The stock price is $90.0, the risk free rate is 5% and the
option strike price is $93.0. Time to expiration is four months and the volatility

is 32%.
In((S — De™")/X) + (r+a2/2)T

Using: a, =
g 1 O'ﬁ
In((90.0 — 4.506_0‘05*0‘25)/93.0) +(0.05+0.32%/2)0.333
a, = =—0.269
0.324/0.333

a, = a, — ovT =(—0.269) — 0.32*v/0.333 = —0.453
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The stock price that is solved iteratively:
c(ib, X, T—1t)=ib+D—X =91.245
Variables b, b,:

_ In((S—De™")/ib) + (r+0%/2)t _ In((90.0 —4.50%¢ °%502) /91 245

b
: o1 0.32+4/0.25

= —0.244
b, = b, —ov/1 = (—0.244) — 0.32°7/0.25 = —0.404

t

M <a1, —by; —,/ —) =0.0758
(o
t

M (az, —b,; —,/—) =0.0671
g

N(b,) = N(—0.244) = 0.403, N(b,) = N(—0.404) = 0.343

The call value is therefore:

t
c=(S—De ™)N(b))+(S—De " )M (al, —b; 7)

t
—Xe ™M <a2, —b,; —\/;) — (X —D)e " N(b,)

¢ = (90.0 — 4.50¢7%95925) 4 0.403 4+ (90.0 — 4.50* ¢~ *05°0-2)*(,0758
—93.0%¢ 005033350 0671 — (93.0 — 4.50) e "950-25%() 343 = 4.892

The American call is priced at $4.892.

Using the adjusted stock price as; S, = S — De™"". The equivalent European
price for the call option is $3.976 .

The code for RGW is shown in Listing

package FinApps;

import CoreMath.IntervalBisection;

import static java.lang.Math.*;

import BaseStats.Bivnorm;

import BaseStats.Probnorm;

public class Americrgw extends IntervalBisection{
public Americrgw() {
}
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public Americrgw(double dividendval, double divitime) {
dividend=dividendval;
divtime=divitime;
super.setiterations(13);
super.setprecisionvalue(le-6);

}

double dividend=1.0;

double divtime=1.0;

double stockprice;

double strikeprice;

double rate;

double time;

double volatility;

public double computeFunction(double rootinput) {
double solution=0.0;

double c=americanCall(rootinput,strikeprice,volatility,
(time-divtime),rate);
solution=((c-rootinput)+(strikeprice-dividend));
return solution;
+
private double americanCall(double s, double x, double sigma,
double t,double r) {

Blackscholecp bp =new Blackscholecp(r);
bp.bscholEprice(s,x,sigma,t,r);
return bp.getCalle();

}
public double amCall(double s, double x, double sigma,double t,

double r, double low, double high) {

stockprice=s;

strikeprice=x;

volatility=sigma;

time=t;

rate=r;

double callvalue;

if (dividend<=(x*(l.0-exp(-r*(t-divtime))))) {
s=(s-(dividend*exp(-r*t)));
Blackscholecp bp =new Blackscholecp(r);
bp.bscholEprice(s,x,sigma,t,r);
return bp.getCalle();

}

Probnorm pn=new Probnorm() ;

double si=evaluateRoot(low,high);

double al=(((log((s-dividend*exp(-rate*divtime))/x)+((rate+

(sigma*sigma)/2)*t))/(sigma*sqrt(t))));
double a2=(al-(sigma*sqrt(t)));

double bl= (((log((s-dividend*exp(-r*divtime))/si)+((rate+

(sigma*sigma)/2)*divtime))/(sigma*sqgrt(divtime))));

double b2=(bl-(sigma*sqrt(divtime)));

double norml=pn.ncDisfnc(bl);

double norm2=pn.ncDisfnc(b2);

double ml=Bivnorm.bivar_params.evalArgs(al,-(bl),
-(sqgrt(divtime/t)));

219
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double m2=Bivnorm.bivar_params.evalArgs(a2,-(b2),
-(sqrt(divtime/t)));
callvalue=((s-dividend*exp(-r*divtime))*norml+
(s-dividend*exp(-r*divtime))
*ml-x*exp(-r*t)*m2-(x-dividend) *exp(-r*divtime)*norm2);
return sij;
}
public static void main(String[] args) {
// Requires a reasonable idea of the buest guess for the
// stockprice with that dividend
Americrgw am = new Americrgw(4.0,0.25);
// higher dividend = lower the low
value, lower the divi, higher the upper guess
double ret= am.amCall(80.0,82.0,0.30,0.3333,0.06,79.0,89.0);
System.out.println("MIDVALUE IS =="+ret);

LisTING 9.2. Option Pricing with RGW

9.3.2.  Bjerksund and Stensland (B&S) Approximation

The Bjerksund and Stensland (B&S) (1993) method is a useful approximation
for pricing a range of options, including futures and currencies.
The solution for pricing a call is given by:

C=aSP—ad(S,T,B,ib,ib)+ (S, T, 1, ib, ib) — (S, T, 1, X, ib)
—x¢(S, T,0,ib, ib) + X$(S, T, 0, X, ib)

(9.3.5)

The parameters are given as:

a=(ib—X)ib™P

B= (o.s-%)Jr\/<%—0.5)2+212
g g g

The function ¢(S, T, vy, m, ib) has a variable list given by:

o hey _(ip\* _ 21n(ib/S)
¢S, T,y,m,ib) =S |:N(s) (S) N(s —0'\/7 >:|
A=[—r+vyb+05y(y—1)o?|T
_ In(S/m)+[b+(y-0.5)d*]T

= T IT

2b
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The price ib at which the option is optimal for exercise is:
ib= By + (B, — By)(1 — &), where h(T) = —(bT +20/T) ( By ) and

Boo—py

B :iX

-
B, = max [X, (—) X]
r—>b
For pricing a put, the put call transformation suggested is:

p(S, X, T,r,b,0)=c(S,X,r—b,—b, o)

Example 9.7

An American call option has nine months to expiry. The underlying stock price
is £82.0, with a volatility of 32%, the option strike price is £78.0. The risk free
rate is 5% and the annual yield from the stock is 9%. Calculate the price of an
American call.

B= (0.5—%>+\/(%—0.5> +2é -

g (052004, (004 s 2+20.05 220
U7 0322 0322 0322 7

The critical price ib is calculated as:

s _ B ,_ 22
T B—-1" 220-1

B, = max [X (rTrb) X] — B, = max [78.0, <%) * 78.0i|

*78.0 =141.884

=78.0
h(T) = —(bT +20/T) < 5o )
Bs — By
= —(0.04*0.7542*0.32+/0.75) (L> = —0.640
141.884 —78.0
ib=By+ (B, — By)(1 —e"D) =78.0+ (141.884 —78.0)(1 — ¢ *¢4"075)

=108.201
a = (ib—X)ib~® = (108.201 — 78.0)108.201 2%
=9.164E —4
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The call value is given by the polynomial:

C=aSP—ad(S,T,B,ib,ib)+ ¢(S, T, 1,ib, ib) — (S, T, 1, X, ib)
—X¢(S, T, 0, ib, ib)+ X¢(S, T, 0, X, ib)

which resolves to:

C =9.164E — 4*82.0>% — 9.164E — 4¢5(82.0, 0.75, 2.20, 108.201, 108.201)
+¢(82.0,0.75, 1, 108.201, 108.201)
—78.0¢(82.0,0.75, 0, 108.201, 108.201)
+78.0¢(82.0,0.75, 0, 78.0, 108.201)
=9.515

The price of an American call option is 9.515.
The code for computing the B&S approximation is shown in Listing @3

/*An approximatiom from Bjerksund & Stensland (1993)
* Americbs.java

*/

package FinApps;

import static java.lang.Math.*;
import BaseStats.Probnorm;
public class Americbs {

public Americbs () {
}
public Americbs(double carryrate) {
crate=carryrate;

}

double brate;

double crate=0.0;

double beta=0.0;

double time;

double rate;

double volatility;

double ib;

public double amerBs (double s, double x, double sigma,

double t, double r, int pc) {
brate=crate<0.0?0.0: (brate=crate!=r?(r-crate):r);
return pc<0? (amBs(xX,s,sigma,t, (r-brate))):
amBs (s,X,sigma,t,r);
}
private double amBs (double s, double x, double sigma,
double t, doubler) {

if (brate>=r) {
Blackscholecp b=new Blackscholecp();
b.bscholEprice(s,x,sigma,t,r);
return b.getCalle();
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}

time=t;

rate=r;
volatility=sigma;

double alpha=params(s,x,sigma,t,r);// gets a
return s>=ib?alpha: ((alpha*(pow(s,beta)))-
(alpha*phi(s,t,beta,ib,ib))+ (phi(s,t,1,ib,ib))-
(phi(s,t,1,x,ib))-(x*phi(s,t,0,ib,ib) )+
(x*phi(s,t,0,x,ib)));

}
private double params(double s,double x,double sigma,double t,
double r) {
beta=((0.5-(brate/(sigma*sigma)))
+sqrt( (pow( ( (brate/(sigma*sigma))-0.5),2)
+(2.0*(r/(sigma*sigma))))));
double betinf=( (beta/(beta-1.0))*x);
double bo=(max(x, (r/(r-brate))*x));
double h=(-(brate*t+(2.0*sigma*sqrt(t)))*(bo/(betinf-bo)));
ib=(bo+(betinf-bo)*(1.0-exp(h)));
double a=( (ib-x)*pow(ib,-beta));
return s>=ib?(s-x):a;
}
private double phi(double s,double t,double gamma,double eta,
double iota) {
double sigma=volatility;
double r=rate;
Probnorm p=new Probnorm() ;
double lambda=(-r+gamma*brate+0.5*gamma* (gamma-1.0)
*(sigma*sigma))*t;
double epsilon=-(log(s/eta)+(brate+(gamma-0.5)
*(sigma*sigma))*t)/(sigma*sqrt(t));
double kappa=2.0*brate/(sigma*sigma)+(2.0*gamma-1.0);
double retval=exp(lambda) *pow(s,gamma)* (p.ncDisfnc(epsilon)
-pow( (ib/s),kappa)*p.ncDisfnc(epsilon- 2*log(ib/s)
/(sigma*sqrt(t))));
return retval;

}

public static void main(String[] args) {

Americbs a=new Americbs(0.09);

double retc=a.amerBs(82.0,78.0,0.32,0.75,0.05,1);
System.out.println("Value ="+retc);

F}

LISTING 9.3. B&S approximation

9.3.3. Quadratic Approximation (Barone-Adesi
Whaley Derivation)
Quadratic approximation can be used to value stock indices, currencies, futures

and stock carrying a constant dividend yield. The Baw (@) model is a
quadratic approximation which incorporates a cost of carry term. The basic



224 9. Analytical Option Pricing Methods
analytical model is based on the Black Scholes differential equation. If the
difference between a European and American option price is @ the standard

equation can be shown as:

dw dw by @
——l—(r—q)SE—i—O.Sa' SS—=rw

at 452
If we define a few parameters:
W(T)y=1—e""
a=2r/d*
2(r—q)
B = 2
o

Also, if we have a function g of the variables S, &
w = h(T)g(S, h) and the general formula can be written:

Bg
asz +BS ———g (—h)a—=0

Ignoring the final term which is small when T is large ( (1 —h) becomes small)

and when ¢ is small is also small. We get: S? 335 +ﬁS% —2¢=0.

If we denote an Amencan call as C(S,T) and a European call as ¢(S, T) it
can be shown that:

s\
C(S,T):c(S,T)+A2<§> if §<S*

CS, T)=S—Xif $>§* (9.3.6)

S* is the critical price at which the stock option should be exercised, it is the
price which satisfies the following equation:

S —X=c(S*, )+ {1—e"""N[d, (5]} 5/, (9.3.7)

where b = (r — g). This equation is solved for the stock price estimate by using
an iterative method (Newton Raphson or Interval Bisection).
The variables used in[0.3.6] are derived from:

[ B=1D+,/(B-1)>+ }05

L € L )]

For a put option the critical price is solved iteratively for the price below which
the option should be exercised. The valuation for a put is :

s\
P(S,T) = p(S, T) + A, (S—> if, S<S8*

P(S, ) =(X=S5) if, =87
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The critical price is given by:

X -8 =p(S™,T)— {1 — e(bir)TN[—dl(S**)]} S /y,

Y= |:_(.3_ 1)—‘/ (,8—1)24-4%] 0.5

In both cases the general form for d, is:

In(S/X)+ (b+0?/2)T
oT

The technique used to derive a critical price can be any of the iterative root
finding methods. Generally it is more efficient to use the Newton Raphson
method, however in circumstances where the solution equation is difficult to
present in a differentiable form, interval bisection or secant methods can be
useful.

The Newton Raphson method requires a seed value to place the target value
within reasonable range of the equation zero. The same approach can be used
to provide base values for low and high parameters used in interval bisection
procedures.

A seed value suggested by Barone-Adesi Whaley is:

d](S) =

St = X +[S8*(c0) — X][1 — "]

hy = (bT +20T) [L}

5*(00) — X
where
X
1—2[—(/3— D+/(B= 1)2+4a:|_1

S§*(00) =

577 = 5" (00) +[X — 5™ (c0) "

hy = (bT —20V/T) [%@o)}

X

1_2[_(3_1)_\/%]4

S(o0) is the critical price for time to expiration being infinite.
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Example 9.8

A commodity option has a strike price of $100.0. The underlying stock price is
$90.0 with a volatility of 15%. The option has 1.2 months to expiry (0.1 years)
and the risk free annual rate is 10%. The cost of carry is zero.

The variables are:

= 2(r—q) _ 2(0.0)
o 015
W) =1—e"T=1-¢"%1901=000995.

=0.0, a=2r/c? =2%0.10/0.15* = 8.888,

The valuation formulas are:

¥ = [—(B— D+ (B- 1)2+47“] 05

48.888
0.00995

- [_(0_1)+\/(0—1)2+ i|0.5=30.384

S*—X=c(S*, T)+{1—e" "N [d,($)]} S*/7,
= (108.436 — 100) — 6.7137 + {1 — 19" N [d,(105.51)]}

Thus the critical price is 105.517.

A= (i—) (1= "N [d,(5)]} =

105.517
30.384

) {1— 010N [d,(105.517)]} = 0.0183

The price of an American call option is therefore:

S\ 90 30.384
C(S,T)=c(S. T) + A, (S—) = 0.2049 +0.0183 < )

105.517
=0.0206

The class Americhaw which implements the Barone-Adesi Whaley formula is
shown in Listing Appended below is the Example 9.8 code.

package FinApps;

import static java.lang.Math.*;

import BaseStats.Probnorm;

import CoreMath.IntervalBisection;

public class Americbaw extends IntervalBisection {

public Americbaw() {
}

public Americbaw(double carryrate) {
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crate=carryrate;
super.setiterations(30);
super.setprecisionvalue(le-6);

b

double crate=0.0;

double brate=0.0;

double d1;

double g2;

double su;

double strike;

double rate;

double volatility;

double time;

double stockprice;

double european;

double n;

double m;

double amcall;

double K;

double ss;

int v;

Blackscholecp bp =new Blackscholecp(crate);

Probnorm p=new Probnorm() ;

public double computeFunction(double rootvalue) {
double stockvalue=0.0;
bp.bscholEprice(rootvalue,strike,volatility,time,rate);
double ds=(log(rootvalue/strike)+(brate+
(((volatility*volatility)*0.5)
*time))/(volatility*sqrt(time)));
double c=bp.getCalle();
stockvalue=((ss-strike)-(c+((1l.0-exp(brate-rate)*time)
*p.ncDisfnc(ds))* (rootvalue/q2)));
return stockvalue;

}

double Si(double s,double x, double sigma, double t, double r) {

brate=crate==0.0?0.0: (brate=crate!=r?(r-crate):r);
stockprice=s;
strike=x;
volatility=sigma;
time=t;
rate=r;
Blackscholecp bps =new Blackscholecp(crate);
bps.bscholEprice(s,x,sigma,t,r);// Black '76 model
double european=bps.getCalle();
if (brate>=r) {

return bps.getCalle();
}
Probnorm p=new Probnorm( ) ;
ss=startvalue(s,x,sigma,t,r);

//get an initial point for range

K=(l.0-exp(-r*t));
double k=2.0*r/((sigma*sigma)*(1l.0-exp(-r*t)));
g2=((-(n-1)+sqrt((n-1*n-1)+4.0*k))*0.5);
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double sev=evaluateRoot((ss-15.0),(ss+15.0));

double endval=((log(sev/strike)+(brate+
(((volatility*volatility)*0.5)
*time))/(volatility*sqrt(time))));

double a2=((sev/qg2)*(l.0-exp((brate-rate)*time))

*p.ncDisfnc(endval));
amcall=s<=sev? (european+(a2*pow((s/sev),q2))):(s-x);
return amcall;

}

private double startvalue(double s, double x, double sigma,
double t, double r) {
m=(2*r/(sigma*sigma));
n=(2*brate/(sigma*sigma));
double q2u=(-(n-1.0)+sgrt((n-1.0)*(n-1.0)+4.0*m) )*0.5;
double su=x/(1.0-1.0/gq2u);
double h2=-(brate*t+2.0*sigma*sqrt(t))*x/(su-x);
double si=x+(su-x)*(1l.0-exp(h2));
return si;
}
public double amCall (double s, double x, double sigma,
double t, double r) {
return Si(s,x,sigma,t,r);
}
public double amPut (double s, double x, double sigma,
double t, double r) {
return Si(x,s,sigma,t,r-brate);

}

public static void main(String[] args) {
Americbaw a=new Americbaw(0.0);
double retc=a.amCall(90.0,100.0,0.15,0.10,0.10);
System.out.println(retc);

LisTING 9.4. Barone-Adesi Whaley quadratic approximation
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10
Sensitivity Measures (The ‘Greeks’)

10.1. The Black-Scholes Pde

The B-S Partial differential equation; rd = 22 4 1§22 + 10252 f;s‘f, has a number
of solutions that depend on the particular derivative that is defined by S as the
underlying variable. The partial elements of the equation provide the derivative
sensitivity measures. Recall that the Black Scholes formula, which can be

written:

c=SN(x)— Xe "N(x — /1) (10.1.1)
p=Xe "N(—x+ o/t) — SN(—x) (10.1.2)

Where

n(3)+(+5)
x= P~ (10.1.3)

For convenience we have written the generalised formulae with the equivalent
as in 9.1.10 to 9.2.4. A succinct coverage is given in Haug (1998).

10.2. Delta Sensitivity

Delta is the option price sensitivity to small changes in the underlying asset:

A, = dc/dS (10.2.1)
3
Ay = £ = N(x) >0 (10.2.2)

The delta of a European put is therefore:

_ ‘;_’; — (N(x)—1) <0 (10.2.3)

put

231
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Which can be written:

A= dc/dS = e "N(d;) > 0 (10.2.4)
A, =0p/dS=—e""N(—d;) <0 (10.2.5)

This can be represented in the general form:

Ay =0c/dS =" TN(d)) > 0 (10.2.6)
A, =dp/3S =" (N(d))—1) <0 (10.2.7)

A portfolio which has a total delta of zero is said to be delta-neutral. A delta-
neutral position is one which is largely unaffected by small changes to the
underlying asset. [[0.2.T] shows the delta is defined as a rate of change for option
price with respect to an underlying asset.

The curve is plotted with parameters:

Sp=8...90,X =55,0=0.25,T =0.876, r =0.08

Figure [[0.] shows the characteristic curve for the delta as a function of stock
price. Using Black Scholes the riskless portfolio would consist of a hedge
containing:

—1 Option
+A Shares of the underlying stock.

Delta (Call)
1.0
0.8
0.6
8
o)
[a)]
0.4
0.2
0.0
10 30 50 70 90
Stock price

FIGURE 10.1. Delta call for a range of stock prices.
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This is the Delta neutral position. From if the stock is non dividend
paying, the delta reduces to: A = N(d,). For a short position in a call, the
delta neutrality requires a long position in the underlying stock, which is an
amount N(d,).

For a Delta put option [[0.2.7] shows that for a non dividend paying stock the
Delta is negative; N(d,;) — 1. Thus a short position in the option requires a short
position in the underlying stock and a long option position requires a long stock
position. The characteristic is plotted from the following parameters:

S,=8...90,X =55,0=0.25,T=0.876,r =0.08
This is shown in Figure [10.2]

Example 10.0

Consider a futures option with six months to expiry. The futures price is £110.0,
the strike price £106.0 and the risk free rate is 10%. The volatility is 32%. How
sensitive are the call and put options to the futures price change?

Using :
A, =0dc/dS =" T N(d,))
In(110/106) + (040.322/2)0.5
4, = n{10/106) +(0+0327/2)0.5 _ 766
0.32:/0.5
N(d,) = 0.609
A, = ©0-019" N g ) = 0.5793
Delta Put
0.0
-0.2 1
—0.4
S
A
—0.6
—0.8
—1.0
0 2IO 4IO 6b SIO
Stock Price

FIGURE 10.2. Delta put for a range of stock prices.
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For the put, using:
A = 9p/dS = e (N(d)) 1)
A, =000 (N(d ) — 1) = —0.3718

Example 10.1

Consider the Delta on a currency option.

A US financial institution sells an eight month put option for £2,000,000. The
exchange rate is 1.7100 and the strike price is 1.7000. The US risk free rate is
4% and the UK rate is 6%, with a volatility of 9% for Sterling. What is required
to make the portfolio Delta neutral?

Using:

Aput = (9p/8S = e_rfT(N(dl) - 1)
, _ In(1.7100/1.7000) + (0.04 —0.06+-0.09°/2)0.666 _

= —0.0647
: 0.09+/0.666
N(d,) = 0.4741

A, = e 0086 (N ) — 1) = —0.5052

p

The Delta shows that when the exchange rate alters by AS, the put option price
changes by 50.52%. The Delta of the total option is £1010400 (50.52 % of
£2,000,000). The bank will therefore have to short this amount of Sterling to
remain Delta neutral.

The Delta call and put characteristics for three different stock prices over time
to expiration is shown in Figures [[0.3] and [0.4] below.

The parameters for both figures are:

Sy = {65,55,45}, X =55,0 =0.25, T = {20...320}, r = 0.08. The days to
maturity are converted to % years (divide by 365).

10.3. Gamma Sensitivity
Gamma is the rate of change of delta with respect to the underlying asset price.

The gamma gives an indication of the sensitivity of delta to the stock price; the
measure is identical for call or put options.

T =d%c/dS = d*p/3*S = n(d,)e " /SoN/T (10.3.1)
In(F,/X 2T
Where d, = n(Fy/X)+(0°/2)
oT

And n(d,) = (1//27)e /> > 0 which is the probability density function for
the standard normal distribution.
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Delta Call
1.0
0.8
0.6 //
0.4
0.2
——————— In the Money
] —— At the Money
Out of the Money
0.0
T T f ' ! ' I ' I
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.3. Delta call for time to expiration with three stock prices.

Delta Put
0.0
02 4
0.4 ///
—0.6
0.8 -
7 - Out of the Money
1 e —— At the Money
10 - B . — —— In the Money
T N T N T N T N T
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.4. Delta put for time to expiration.
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Equation [[03T] is the gamma for a non dividend paying stock. The gamma
for a portfolio is:

I' = *11/45> (10.3.2)

Figure shows the Gamma characteristic for a range of stock prices and
Figure shows the Gamma for three stock prices over time to maturity. The
magnitude of Gamma gives an indication of the relative rate of change for the
Delta. A small Gamma indicates that the Delta is changing slowly. The frequency
of adjustment to a portfolio is therefore reduced to maintain Delta neutrality.
A high value of Gamma indicates the need to constantly readjust the hedgeing
needed to achieve Delta neutrality.
The characteristic in Figure [[0.3] shows gamma for parameters:

Sp=28...90,X=55,0=0.25,T =0.876, r =0.08

Example 10.2

A stock option with 9 months to expiry has a strike price of $50.0. The stock
price is $41.0 with a volatility of 32%. The risk free interest rate is 10%. What
is the option Gamma?

Gamma (call & put)
VAR
0.03 / \
AN
\
// \\
g 0.02 //
E /
< /
&} /
/
/
0.01 /
//
0.00 -
T T T T

Stock Price

FiGURE 10.5. Gamma for a range of stock prices.
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Gamma for three stock prices

0.12
""" In the money call:Out of money put
At the money
Out of money call:In the money put
0.08
0.04
0.00

T T T T T T T T T
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.6. Gamma for three stock prices.

Using: T' = 8%c/3*S = 8*p/3*S = n(d,)e”"T /Sa~/T

In(Sy/X)+ (r+02/2)T  In(41/50)+ (0.1040.322/2)0.75
d, = = =—0.9647
oT 0.32+/0.75
n(d,) = n(—0.9647) = 0.250
r— n(d))e” 0" 0250”7
SoNT 41+0.324/0.75

The IT" is 0.022. Thus for an increase in stock price to $50.0, the Delta of the
option increases by 0.198.

Figure shows Gamma for three stock prices with time to maturity. The
parameters are:

Sy ={65,55,45}, X =55,0=0.25,T ={20...320}, r =0.08

0.022.

Example 10.3

A put option on a stock index has 6 months to expiry. The index is currently at
350, the strike price is 340. The risk free rate is 10% per annum, the stock yield
is 5% and the index volatility is 27%. Calculate the I" of the index option.
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Using:
[ =dc/0*S=&p/PS=n(d,)e' " /SoNT

IS/ X)+ =g+ )T
oNT
~ In(350/340) + (0.10 — 0.05+0.27/2)0.5
0.274/0.5

n(d,) = n(0.378) = 0.371

d,

=0.378

d)eb-nT 0.37]e%05°0:5
po M) ° —0.00542

SovT  350%0.274/0.5

If the index rises by a single unit (to 351) the Delta of the option rises by
0.00542.

10.4. Theta Sensitivity

Theta is the rate of change of a security’s value with respect to time. As the
time to maturity decreases, theta is usually represented as a negative value. The
theta of a portfolio is given as:

O =—all/or (10.4.1)

The theta for a call on a non dividend paying stock can be represented as:

_Sn(d])(r 3
2Vt

This is also represented in our general formula as:

0= rXe "N(d, — o/1) > 0 (10.4.2)

Se’=Tn(d,)o

0, =—dc/IT = — (b—r)Se® "TN(d,) — rXe " N(d,) < 0

2T
(10.4.3)
The theta for a put:
Sn(d
O = SMT o N(—d, + o) (10.4.4)
NG

This in our general formula is:

Se""Tn(d))o

O =—3dp/dT = —
» p/ 2 IT

+(b—1)Se® T N(—d,) + Xe T N(—d,)
(10.4.5)
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Theta Call

3

Theta

76 T T T T
0 20 40 60 80

Stock Price

FIGURE 10.7. Theta for a call option.

Theta is usually quoted for days, so the translation into fractions of the year, take
into account the calendar year or trading year (recall the trading year consists of
252 days).

Theta is usually a negative value, as depicted in Figure [[0.7] The value of an
option tends to reduce with a reduction in time to maturity. When the stock price
is 8 (from Figure [[07) the Theta is nearly zero, as the stock price approaches
at-the-money (between 50 and 60 in Figure [[0.7), the Theta reaches a large
negative value. After passing the at-the-money point Theta rises generally
following the increasing stock price tending to —rXe™'T.

with parameters: S, =8...90, X =55,0 =0.25,T =0.876, r =0.08

Figure[I0.7lshows the characteristic for Theta a put option. Here the early stock
prices are associated with a positive value of Theta which gradually decaysto
a negative value. Figures show the characteristics for a call and put
option with respect to time to maturity (calendar days).

Figure [[0.8] Theta put with parameters: S, = 8...90, X = 55, ¢ = 0.25,
T =0.876,r =0.08

Example 10.4

Consider a European put on a stock index. The current price is €450 with a
strike price of €430. The time to expiration is 1 month with the risk free rate
being 8% . The yield is 6% with the index volatility at 22%. Compute the trading
day Theta.
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Theta Put
4 -
2 4
ot
Q
=
0 /
_2 T T T T T
10 30 50 70 90
Stock Price

FIGURE 10.8. Theta Put.

Theta Call for three stock prices

1 4
-3 e ———

—7 4

- In the Money

~11 4 —— At the Money

———Out of the Money
~15 4
v T v T v T v T v T T
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.9. Theta (call option) for three stock prices with time to maturity.
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Se"Tn(d))o

+(b—r)Se" " N(—d
2IT (b—r) (—=d))

Using: ®, = —dp/dT = —

— Xe ""N(—d,)
_ In(Sy/X)+(r—q+0?/2)T
- e
_ In(450/430) + (0.08 — 0.06+0.227/2)0.08333
B 0.224/0.08333
dy=d, —ovT =0.773—0.22"+/0.08333 = 0.7103

d,

=0.773

n(d,) = n(0.773) = 0.295
N(—d,) = N(—0.773) = 0.2195
N(—d,) = N(=0.7103) = 0.2387

o 4506(0.08—0.06)*008333*0‘295*0.22
e 21/0.0833

+0.08"430 0087008333y 2387 — _48.19.

+—0.06"450¢~"%0%%353+0.2195

The Theta for a one trading day time delay is —48.19/252 = —0.191. For a
calendar day the Theta would be —0.132.

Figure shows the Theta with a range of stock prices where the input
parameters are:

S, = {65,55,45}, X =55, 0 =0.25, T = {20...320}, r = 0.08

Figure [MO0.I0] Theta put with: S, = {65,55,45},X = 55,0 = 0.25,
T ={20...320}, r = 0.08

10.5. Vega Sensitivity

Vega sensitivity measures the rate of change of a derivative’s value with respect
to the volatility of the underlying asset. The Vega is equal for put and call.
The Vega for a portfolio is:

A =0l1/0o (10.5.1)
The Vega for a European call or put is :
S/tn(d,) >0 (10.5.2)
In our general formula:

A = dc/do = dp/do = Se* T n(d)VT >0 (10.5.3)
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Theta Put for three stock prices

2 -
2
Out of the Money
=6 —— At the Money
In the Money
~10 -
T T T T T
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.10. Theta (put option) for three stock prices with time to maturity.

Vega measures the sensitivity of an option to changes in volatility. So far we
have considered that volatility is constant in using other sensitivity measures, in
reality the volatility tends to change constantly. Thus the value of an option will
change with alterations to stock price, time and volatility. The Black Scholes
model requires a constant value for volatility and it would be more technically
correct to use a stochastic model for calculating a measure based on changing
volatility. The empirical evidence however supports the validity of using a Black
Scholes based model such as the Vega.

When considering a portfolio of derivatives, the Vega will increase to a high
value when the portfolio is sensitive to volatility changes. If the portfolio is
relatively unaffected by volatility changes, the Vega will be low.

Figures[[0.1Tland [Q.12) show that the Vega achieves a high value coincidental
with higher option prices.

Figure [[Q.11] shows Vega for a range of stock prices with parameters:

Sp=8...90,X =55,0=0.25,T =0.876, r =0.08

Example 10.5

A stock option has 9 months to expiration. The risk free rate is 9%, the volatility
is 27% and the current stock price is £50. If the option strike price is £56. What
would be the effect of a 5% rise in volatility?
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Vega (Call & Put)
6 -
4 4
<

&
2 ]

2 A

0 4

10 30 50 70 90
Stock Price
FIGURE 10.11. Vega.
Vega (Call and Put)
20
15
10
5 -
] ——— In the Money (call) Out of money(put)
¢ At the Money
0 - == ———Out of Money (call) In Money (put)
T N T N T N T N T
0.1 0.3 0.5 0.7 0.9

Time (years)

FIGURE 10.12. Vega for three stock prices with time to maturity.
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Using:

A =dc/do = dp/do = Se” " n(d)NT

In(Sy/X)+ (r4+0%/2)T  In(50/56) + (0.0940.27%/2)0.75
= — = —0.07908
oT 0.274/0.75
n(d,) = n(—0.07908) = 0.468

A = dc/do = dp/do = 50" n(d,)~/0.75 = 17.22077.

The Vega of 10.5 means that an increase of 5% in volatility will give
(0.05*17.22) = 0.861

The effect of a 5% increase in volatility (from 27% to 32%) will therefore
increase the option value by 0.861.

Figure shows Vega with parameters:

S, = {65,55,45}, X =55, 0 =0.25, T = {20...320}, r = 0.08

Figurell0.12]agrees with the intuitive observation that a higher Vega is equivalent
to a higher option price and a higher volatility is associated with longer times to
maturity.

Example 10.6

A stock index with a current value of $350 has a strike price of $340. The
underlying dividend yield is 2%, with an index volatility of 22%. The risk free
rate is 6%. How sensitive is a 2% increase in volatility for a six months put on
this index option?

Using: A = dc/do = dp/do = Se" " n(d )T

IS/ X)+(r—q+0a*/2)T

- s

_ In(350/340) + (0.06 — 0.02+0.22/2)0.5
B 0.22:/0.5

n(d,) = n(0.392) = 0.652

A = dp/do = 350e %05 n(d,)v/0.5 = 90.497

d,

=0.392

A 2% rise in the volatility of the index will give: (0.02%90.49)=1.80. Thus the
put option value will rise by 1.80.
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10.6. Rho Sensitivity

The Rho of a derivative is the sensitivity to a small change in the risk free

interest rate.
For a portfolio:

p =0m/dr
The Rho for call and put:
Call (non dividend paying) p = Xte "N(d, — /1) > 0
Put (non dividend paying) p = —Xte "N(—d,+0o1) <0
In the general form; calls
p=3dc/dr =TXe" ""N(d,) > 0,b#0

p=0dc/dr=—-Tc<0,b=0

In the general form; puts
p=30dp/dr=—TXe" ""N(—d,) <0,b£0
p=0p/dr=—Tp<0,b=0

(10.6.1)

(10.6.2)
(10.6.3)

(10.6.4)
(10.6.5)

(10.6.6)
(10.6.7)

The Rho for a range of stock prices is shown in Figures [[0.13] and [[0.14] As the
option tends to at the money, Vega rises. At the beginning prices Vega shows

that the option is either deep in or deep out of the money.

Rho (Call)
5 -
4
3 -
o)
£
M 2 4
1 -
0 -
-1 T T T T
10 30 50 70 90
Stock Price

Ficure 10.13. Rho.
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Rho (Put)
0 -
-1 A
2 -
)
£
4
3 -
_4 -
-5
10 30 50 70 90
Stock price

FIGURE 10.14. Rho (Put).

Example 10.7

A European call on a stock option with a price of $70.0 has a strike price of
$73.0. The risk free rate is 9% and the volatility of the stock is 15%. Calculate
the Vega for a 9 months option.

Using:
p =dc/dr = TXe" """ N(d,)

d— n(Sy/X)+ (r—a*/2)T

2 o/ T
In(70/73) + (0.09 — 0.152/2)0.75
d, = a7+ /2075 _ 1316
0.15:/0.75

N(d,) = N(0.1316) = 0.552
p = dc/dr = 1*73e7"%%0.5523 = 28.267

The Rho is therefore 28.267. For a 1% rise in interest rate, the call price will
increase by 0.282.

Figure [[0.T3] shows Rho with parameters: S, =8...90, X =55, 0 = 0.25,
T =0.876, r =0.08.

Figure [[0.74 shows Rho (put) with parameters: S, = 8...90, X = 55,
o=0.25,T=0.876, r = 0.08.
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Rho (Call) for three stock prices

40

,,,,,,,,, In the Money

—— At the Money

Out of the Money
30
20
10
O -
T ' ! ' I ' I ' I
o1 03 05 0.7 0.9

Time (years)

FIGURE 10.15. Rho (call) for three stock prices with increasing time to maturity.

Figure shows the Rho for a range of stock prices with parameters:
So = {65,55,45}, X =55,0=0.25,T ={20...320}, r =0.08

Figure [[0.T6 Rho (Put) for three stock prices with increasing time to maturity,
with parameters:

S, = {65,55,45}, X =55, 0 =0.25, T = {20...320}, r = 0.08

10.7. Option Extensions

Useful extensions to gauge sensitivity are the cost of carry and elasticity
measures.

10.7.1. Elasticity

The elasticity measure is an extension of Delta in that it gives an indication
of the sensitivity in percentage terms to a percentage change in the underlying
asset price.
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Rho (Put) for three stock prices

~10 4 S~ -
20 1 T~
30 4 - Out of Money

——— At the Money
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FiGure 10.16. Rho put.

%)

Eean = A, = = " N(d, )— > 1 (10.7.1)

s:A

put

= e 7T[N(d,) — 1]— <0 (10.7.2)

’BIV)"’

Example 10.8

Using the data from Example 15.0. calculate the elasticity of a call and put
option.

For the call:

S s
Eean = AC; = e(b )TN(dl)E

In(Sy/X)+ (r+02/2)T
d, =
o T
In(110/106) + (0.10+0.322/2)0.5
4, = n110/106) +(0.10+0.32°/2)05 _ o
0.324/0.5
S _ S 010%0.5x 110
Sean = A~ = et >TN(011)Z = 010703 Md)) 157 =514
For the put:
S S
Epur = A ; =e” V)T[N(d )_ 1]
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In(Sy/X)+ (r+02/2)T
d, =
o T
In(110/106) + (0.10+0.322/2)0.5
4, = 01107106+ (0.10+0.32°/2)0.5 _ o7
0.32:/0.5
S S 110
g, =0 —=e"T[Nd,)—1]= = e 190550497 — 1)* —— = —6.07

P ’p p 5.601

10.7.2.  Cost of Carry

The cost of carry refers to the storage costs and interest paid (if any) from the
finance of an option’s underlying asset. A non dividend paying option has no
cost therefore the cost of carry is simply r. For a stock index the cost of carry
will be the cost () minus the yield from the underlying asset (¢) The cost of
carry b is therefore, b = r — q. For a currency the cost of carry is, b=r—r;.,
for a commodity with a utility cost of u the cost of carry is, b =r — g+ u.

The cost of carry is computed using:

dc/db = TSe" " N(d,) > 0 (10.7.3)
dc/db = TSe" ""N(—d,) > 0 (10.7.4)
Where
In(Sy/X)+ (b+0?/2)T
d, =
o T

Example 10.9

A stock index option with three months to expiry has a strike price of £290. The

index price is £300 with a volatility of 11% and returns a yield of 4%. The risk

free rate is 8%. What is the sensitivity to cost of carry for a call and put option?
For a call:

dc/db = Tse®™ T N(d,)

. In(300/290) +(0.04+0.11%/2)0.25
b 0.114/0.25

=0.8257

N(d,) = N(0.8257) = 0.795
dc/db = TSe" "TN(d,) = 0.25*300¢ 4008025+ 795 — 59,07
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For a put:
dp/ob = —TSe" T N(—d,)

1n(300/290) + (0.04 +0.112/2)0.25
4, = nB00/290)+(0.04+0.11/2)0.25 _ o5,

0.11,/0.25
N(—d,) = N(—0.8257) = 0.2044

dp/db = —TSe" "I N(—d,) = —0.25*300¢*04-0-0897025%( 2044 = —15.183

The ‘Greeks’ are implemented in the class Blackscholecp. The implementation
of sensitivity measures in this class is a fairly arbitrary decision. The choice
of having this class containing methods to compute both Black-Scholes and the
sensitivity measures is biased towards the fact that the measures are based on
Black-Scholes basic options. The sensitivity measures could well be implemented
as a separate class. The ‘Greeks’ are shown in Listing 0.1

package FinApps;

import BaseStats.Probnorm;

import static java.lang.Math.*;

public final class Blackscholecp {
public Blackscholecp() {

*For carryrate=rate. The black Scholes basic model.
For carryrate a zero value. Black 1976 futures
* For carryrate !=rate Gives cont yield model
*/
public Blackscholecp(double carryrate) {
this.crate=carryrate;
}
private double crate=0.0;
private double brate=0.0;
private double d1=0.0;
private double d2=0.0;
private double callprice=0.0;
private double putprice=0.0;
private double deltac=0.0;
private double deltap=0.0;
private double gamma=0.0;
private double vega=0.0;
private double thetac=0.0;
private double thetap=0.0;
private double rhoc=0.0;
private double rhop=0.0;
private double elasticityc=0.0;
private double elasticityp=0.0;
private double carryc=0.0;
private double carryp=0.0;
public double getCalle() {
return callprice;
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public double getPute() {
return putprice;

}

private void setcalle(double call) {
callprice=call;

}

private void setpute(double put) {
putprice=put;

}

public void bscholEprice(double sprice, double strike,

double volatility,double time, double rate) {

Probnorm p=new Probnorm( ) ;

dvalues (sprice,strike,volatility,time,rate);

double probdl1=0.0;

double probd2=0.0;

probdl=p.ncDisfnc(dl);

probd2=p.ncDisfnc(d2);

double densityfunc=p.npdfDisfnc(dl);

double densityfunc2=p.npdfDisfnc(d2);

setcalle( ((sprice*exp((brate-rate)*time))
*probdl)-( (strike*exp(-rate
**time) )*probd2));

setpute( ((strike*exp(-rate*time))

*p.ncDisfnc(-d2))-(sprice*exp((brate-rate)

*time) )*p.ncDisfnc(-dl));
deltac=(exp((brate-rate)*time)*probdl);
deltap=(exp((brate-rate)*time)* (probdl-1));
gamma=( (densityfunc*(exp((brate-rate)*time)))

/(sprice*volatility*sqrt(time)));
vega=( (sprice*exp( (brate-rate)*time))
*densityfunc*sqrt(time));
double thetaterml=( (brate-rate)*

(sprice*exp( (brate-rate)*time)*probdl));
double thetaterm2=(rate*(strike*exp(-rate*time) )*densityfunc2);
thetac=(((-(sprice*exp( (brate-rate)*time))

*densityfunc*volatility)/(2*sqrt(time)))
-thetaterml-thetaterm2);

}
private void dvalues (double sprice,double strike,
double volatility,double time, double rate) {
brate=crate==0.0?0.0: (brate=crate!=rate?
(rate-crate):rate);
dl=((log(sprice/strike)+(brate+(volatility*volatility)
*0.5)*time)/(volatility*sqrt(time)));

d2=(dl-(volatility*sqgrt(time)));

}
public void setDelta(double sprice,double strike,
double volatility,double time, double rate)

Probnorm p=new Probnorm();
dvalues (sprice,strike,volatility,time,rate);
double probd1=0.0;
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double probd2=0.0;
probdl=p.ncDisfnc(dl);
probd2=p.ncDisfnc(d2);
deltac=(exp((brate-rate)*time)*probdl);
deltap=(exp((brate-rate)*time)* (probdl-1));
}
public void setGamma (double sprice,double strike,
double volatility,double time, double rate)

Probnorm p=new Probnorm() ;

dvalues(sprice,strike,volatility,time,rate);

double probdl1=0.0;

probdl=p.ncDisfnc(dl);

double densityfunc=p.npdfDisfnc(dl);

gamma=( (densityfunc* (exp((brate-rate)*time)))

/ (sprice*volatility*sqrt(time)));
}
public void setVega(double sprice,double strike,

double volatility,double time, double rate)

Probnorm p=new Probnorm();

dvalues(sprice,strike,volatility,time,rate);

double probdl1=0.0;

probdl=p.ncDisfnc(dl);

double densityfunc=p.npdfDisfnc(dl);

vega=( (sprice*exp((brate-rate)*time))
*densityfunc*sqrt(time));

}
public void setTheta(double sprice,double strike,
double volatility,double time, double rate)

Probnorm p=new Probnorm() ;
dvalues(sprice,strike,volatility,time,rate);
double probdl=p.ncDisfnc(dl);
double probd2=p.ncDisfnc(d2);
double probd3=p.ncDisfnc(-dl);
double probd4=p.ncDisfnc(-d2);
double densityfunc=p.npdfDisfnc(dl);
double densityfunc2=p.npdfDisfnc(d2);
double thetaterml=( (brate-rate)*(sprice*exp
((brate-rate)*time)*probdl));
double thetaterm2=(rate*(strike*exp
(-rate*time) )*probd2);
double thetaterm3=( (- (sprice*exp((brate-rate)*time))
*densityfunc*volatility)/(2*sqrt(time)));
thetac=(thetaterm3-(thetaterml)-(thetaterm2));
double thetaterma=( (brate-rate)*(sprice*exp
((brate-rate)*time)*probd3));
double thetatermb=(rate* (strike*exp
(-rate*time) )*probd4);
double thetatermc=((-(sprice*exp((brate-rate)*time))
*densityfunc*volatility)/(2*sqrt(time)));
thetap=(thetatermc+(thetaterma)+(thetatermb));
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}
public void setRho(double sprice,double
strike,double volatility,double time, double rate)

Probnorm p=new Probnorm() ;
dvalues (sprice,strike,volatility,time,rate);
if(brate!=0.0)
{
rhoc=(time*strike*exp(-rate*time)*p.ncDisfnc(d2));
rhop=(-time*strike*exp(-rate*time)*p.ncDisfnc(-d2));
}
else
{
bscholEprice(sprice,strike,volatility,time,rate);
rhoc=(-time*getCalle());
rhop=(-time*getPute());

}
public void setElstic(double sprice,double strike,
double volatility,double time, double rate)

bscholEprice(sprice,strike,volatility,time,rate);
setDelta(sprice,strike,volatility,time,rate);
elasticityc=(getDeltac()*(sprice/getCalle()));
elasticityp=(getDeltap()*(sprice/getPute()));

}
public void setCarry(double sprice,double
strike,double volatility,double time, double rate)

Probnorm p=new Probnorm( ) ;
dvalues (sprice,strike,volatility,time,rate);
carryc=(time* (sprice*exp( (brate-rate)
*time) )*p.ncDisfnc(dl));
carryp=(-time* (sprice*exp((brate-rate)*time))
*p.ncDisfnc(-dl));

}

public double getDeltac() {

if(deltac>0.0)

return deltac;

else

throw new RuntimeException("INCORRECT DELTA
PARAMETRS"+deltac);

}
public double getDeltap() {

return deltap;
}
public double getGamma () {
if (gamma>0.0)
return gamma;
else

253
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throw new RuntimeException ("INCORRECT GAMMA
PARAMETRS"+gamma) ;
}
public double getThetac() {
return thetac;
}
public double getThetap() {
return thetap;
}
public double getVega() {
return vega;
}
public double getRhoc ()
{
return rhoc;
}
public double getRhop()
{
return rhop;
}
public double getElasticc()
{
return elasticityc;
}
public double getElasticp()
{
return elasticityp;
}
public double getCarryc()
{
return carryc;
}
public double getCarryp()
{

return carryp;

LisTING 10.1. Implementation of class to compute Black scholes valuation and option sensitivities

References
Haug, E. G. (1998). The Complete Guide to Option Pricing Formulas. McGraw Hill.
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Interest Rate Derivatives

The valuation models we have looked at so far have made the assumption that
interest rates are constant in the lifetime of the option. The expected payoff from
an asset is at the risk free rate and the risk free rate is used to discount the future
payoff values. The principle of risk neutrality is an underlying assumption of
the basic Black Scholes model. An issue arises when the interest rates during an
asset’s life, follow a stochastic process. We will see later that the Black Scholes
model is still consistent, even in a stochastic interest rate environment, when due
account is made of the risk effect from the stochastic rates.

11.1. Market Price of Risk

The market price of risk defines a value above the risk free return for an asset.
If we assume that all assets exist in a risk environment we can account for risk
free returns as being an environment in which the market price of risk is equal
to zero.

If we have an option whose price is dependent on a single underlying variable
S and assume that it follows the Ito process (see [3.1.2):

dS/S = mdt + sdz

The variables m, Z are the growth and volatility respectively of the variable S,
which depend on S and ¢ only. The variable S does not need to be the price of
an asset and does not necessarily have to be traded (e.g. temperatures or interest
rates). Given two derivatives f,(S, t), f,(S, t) with the condition that they are
dependent only on S and ¢ and:

% =, dt+o0,dz

Then,
d d
i = u,dt+ 0,dz and 2 = u,dt+ o,dz.
fi f

Where

255
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My My, 07, 0, are functions of S and ¢ the term dz represents uncertainty in
the process and is the same uncertainty for both derivatives. Both prices share
the same Wiener process (dz).

If we construct a portfolio of o, f, and —o, f; this portfolio becomes instan-
taneously riskless by:

o fdfy — o fidf, = oo fof | (ndt + 01dz2) — o\ fi [, (r,dt + 0,d7)
= (0o fof i — o1 f1 far,)dt
Thus,

Al_[ = (o2 faf il — Of 1 fobey) At

Given that the portfolio has now eliminated risk, it now earns the risk free rate;

ATl =r[]As.

Combining this with the previous equations gives:

M0y — O =10 — 10y
Mz _ M Tr
gy )

(11.1.1)

The left hand side and right hand side of 15.1.32 show that they depend on
the parameters of f; and therefore S and ¢ and not on the derivative f. If we
define L= = £2== — A, then A is the market price of risk of S. The market price
of risk i 1s mdependent of the derivative.

For any derivative which is dependent on an underlying variable :

d
—f = udt+ odz (11.1.2)
f
and
pL—r/o=2A (11.1.3)

Equation [T.1.3] applies to any derivative which depends on the same variables
S and r. By rearranging 11.1.3 Ao = . — r, we can view the left hand side as
the proportion of risk that § contributes multiplied by the price of that risk. The
right hand side refers to the amount of excess return required to offset the risk.

If we consider the values of w and o in terms of Ito’s lemma, the partial
differential equation becomes:

1 /0 ad i S a
—— _f+M f 2S2_f ,O = U_l
AN as T 382 f as

of of 1 L8
T (= rSZ + 2o
ar T(m—ro)S

SO =1 (11.1.4)
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The appearance of u infers that risk is part of the investors strategy and the
derivative valuation needs to take account of the market price of risk. If the asset
is a traded security the assumption is that the market price of risk is 0 and u = r.
The valuation of a derivative can be computed using the discounted value of the
derivative at the riskless rate if the process is now:
ds

<= (w—Ao)dt+ odz (11.1.5)
dz is now the Wiener process of the risk neutral measure.

If there are several variables which can affect the market price of risk for a
particular derivative, then each of the individual variables have to be incorporated
into the single risk measure.

If we have n variables

SO’ Sl,.A.Sn

which follow the stochastic process
ds;/S; = m;dt+s,dz;

for i=0..n. The m,, S, terms are expected growth and volatility rates which may

124 1
be functions of the underlying asset for any security therefore which is dependent
on the variables:

d n
%:Mdt—i—ZUidzi (11.1.6)

i=0
1 is the expected return from the security (whereas m is the expected growth

of the variable). The o;, dz; terms are the risk contributed by the ith variable to
this return. It can further be shown that:

p—r=>y \o; (11.1.7)
i=0

Where A; is the market price of risk for the S;

11.2. Martingales

A Martingale is a zero drift stochastic process with the following properties:
Given a variable X it is a Martingale if the stochastic process {X(7), ¢ > 0}
holds that,

E[|S(1)]], < o0, t > 0 and
E[S(1)|S(u), 0 < u < x] = S(x)
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For a discrete time

E[S,1118.8,,...5,]=S

n

Thus the expected value of a Martingale at any future time is its expected value
today. A variable follows a Martingale process if dS = odz, the variable o can
also be stochastic with dependencies on S.

The Martingale process follows E(S;) =S,

The Equivalent Martingale measure

If we have two stocks with prices A and B respectively, being dependent on
a single underlying risk.

Let

A
o="2
B

where 6 is the relative price measure which measures A in terms of units of B,
with B termed the numeraire. An equivalent Martingale () is a measure that
defines the market price of risk in terms of the numeraire, the security B can be
thought of as a proxy measure. The market price of risk is taken as the volatility
of the numeraire, thereafter for any prices that A might take on, 6 is Martingale
for the ratio A/B and all securities A.

If the market price of risk is oy it can be shown that

d (%) (o, —UB)%dz (11.2.1)

If the market price of risk is defined with respect to B then the market is said to
be forward risk neutral with respect to B. Thus,

Ay = ByEy(Ar/Br) (11.2.2)

where the expected value is forward risk neutral with respect to B.

The equivalent Martingale measure can be based on whatever is appropriate
for the domain, such as the money market account, zero coupon bond prices etc.
In terms of interest rates the numeraire is often taken as the price of a bond.

Consider the Black Scholes model which we have used to date in a risk neutral
environment. The model can be adjusted to incorporate the effects of stochastic
interest rates by using the forward risk neutral process. The effect of this is to
adjust our basic Black Scholes model to incorporate the zero coupon rate in
place of the risk free rate, the general argument is as follows:
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If we take the market price (M,,) of a zero coupon bond as the numeraire such
that M (¢, T) is the price at time ¢ of a bond that pays 1 unit at time 7. If we
are forward risk neutral with respect to M, then

Ay= Mp(o’ T)ET(AT)'

Given a variable, x (any variable which is not an interest rate) that has a forward
contract on it with time to maturity 7. The price of this forward contract is:

Ay =M, (1, T)(Er(x,) — X).

The forward price F is the strike price at which A, = 0. Therefore, F = E;(X;).
This infers that the forward price of a variable is the expected future spot price
where the variable is risk neutral with respect to M, (t, T).

If we consider the situation where the variable is an interest rate. The interest
rate when a zero coupon bond is used as the numeraire is represented as:

R(t, 7) (11.2.3)

where 7 = T, — T, and the annualised time period is ((7, — 7,) eg, for 7 =0.25,
the compounding period is quarterly. The forward price is given as:

Mp(t, T,)/Mp(t, T;)

Given that the forward interest rate is the implied rate of the forward zero coupon
bond rate it can be shown that:

R(0,T,,T,) = Er,(R(T}, T}, T,)) (11.2.4)

where E7, is forward risk neutral with respect to M, (¢, T,). The forward interest
rate (15.1.42) is therefore the future interest rate in a risk neutral environment
with respect to a zero coupon bond maturing at 7,.

Now consider a European call option on a non dividend paying stock which
expires at time T. The option price is

c=M,(0, T)E; [max(S; — X), 0]

Assuming that the stock price is distributed lognormally and that the standard
deviation is given as ¢ it can be shown that

Er [max(S; — X), 0] = E4(S7)N(d,) — XN(d,)

For,
g In[E,(S;)/X]+s%/2
=
S
In[E;(S7)/X]— 92/2
d, =

S
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From the observation that E,(S;) is the forward stock price for maturity at time
T. Thus we have

E;(S;) = SOeRT (11.2.5)
We now have
c=S,N(d,) — Xe *" N(d,)

for
J _ In(Sy/X+RT +5°/2)
' S
J _ In(Sy/X +RT —*/2)
=

S

If stock price volatility o is defined as, o+/T = s, then d, and d, can be written
in the well known form:

J - In(Sy/X) + (R+0?/2)T
1= O'ﬁ

_ In(Sy/X)+(R—0?/2)T

= e

which is the standard Black Scholes equation with the continuously compounded
risk free rate being replaced by the forward interest rate risk neutral with respect
to a zero coupon bond. Therefore we can use the standard Black Scholes method
when using stochastic interest rates.

dy

11.3. Interest Rate Caps & Floors

A rate cap is an option to offer protection against rises in the prevailing interest
rate. A common cap is to protect against rises in the LIBOR rate. The floating
note rate is set at the current LIBOR rate, at periodic times the LIBOR rate is
reset and the interest rate on the note reflects this. A cap option would offer
insurance against the rise by having a strike rate which is the value of the capped
interest rate.

Suppose we have a cap of 5% and a notional value of £1,000,000. If the tenor
(times between reset periods) is 0.25 years and the cap life is 2 years, the cap
offers protection against rises above 5%, as follows:
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LIBOR at 5%; 0.25*0.05*1, 000, 000. = 12, 500 interest payable. LIBOR rises
by 1% to 6%;= 0.25*0.06*1, 000, 000. = 15000. The cap would offer 2,500
worth of protection.

An interest rate cap is made up of a number of caplets, which are individual
rate options. The cap is therefore a portfolio of caplets, which have the following
properties:

For a cap with life (time to expiry) T made from tenors ¢, t,, ... t,, (t,,.; =T).
The cap rate is X, and r is the interest rate between ¢, and f,,+ 1 seen from
time ¢,,. The notional sum (note value) is V. The payoff is

V 6, max(r — X,,0) (11.3.1)

where, 0,, = (t,,.1 — 1,,)-
The cap is therefore a portfolio of call options on the LIBOR rate at time ¢,
with payoff at time ¢,,, ,. Equation [T.3ldescribes such a a call option or caplet.
A floor is the converse of the cap. The floor offers protection against the
floating rate note falling below the strike value. A floor is defined as a portfolio
of floorlets. The individual floorlet options are defined as:

Vo, max(X, —r, 0) (11.3.2)

Thus a floor is a portfolio of European style put options on interest rates.
An interest rate cap can also be seen as a portfolio of put options on zero
coupon bonds. The payoff is defined as:

V(1+X,0
max V—M, (11.3.3)
1+x,95,
where, W is the value of a zero coupon bond at #,, that pays at time ¢,, + 1.

A cap is the portfolio of caplets which is defined as:

Cap = Z caplet,

i=1

The caplet value is given as:

V6, (e7)[F,N(d,)—X,],where T =t,+1 (11.3.4)
where
L _In(EJ/X) + (520,
' B,/

L In(F/X,) = (33/2),
ST
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The notional and forward prices should be adjusted to take account of the period
basis ie, 360 or 365 days. So that:

V = (d/Basis) and
F = (d/Basis)

where d is the number of days in the forward rate period.
The floor value is given by:

Floor =Y floorlet,
i=1

The floorlet is given as:
14 3111(67r7‘)|:)(r1\] (_dZ) - FmN (_dl)]’ where T = z‘m-%—l

Each caplet in the portfolio is valued separately using 11.3.4. Often spot volatil-
ities are used for each caplet period, in some circumstances flat volatilities are
used by brokers. The flat volatilities are adjusted for the life of the caplet.

Example 11.0

Consider a contract to cap LIBOR on a notional £50,000 at 7.6% per annum,
for 120 days beginning in one year. The LIBOR curve is flat at 6.9% with a
forward rate volatility of 23%. The zero rate is 6.45%.

The caplet price is:

_ In(F,/X,)+(8%/2)1, _ 1n(0.069/0.076) +(0.23%/2)1.0 _

d, = =—0.3051
! 8, /T, 0.234/1.0
In(F,/X,)—(8%/2)t,,  In(0.069/0.076) — (0.232/2)1.0
d, = = = —0.5351
8,/ 0.234/1.0

( Alternatively, d, —d, — 0,,,/%,, = —0.5351).

V 8m(e_”)[}(wm]v(dl) - Xn] =
50, 000%0.23 (¢~ 0645"13333)[0.069* N(—0.3051) — 0.076N(—0.5351)] = 56.697

The caplet price is £56.70.

11.4. Swap Options

Swap options (swaptions) are options offered on interest rate swaps. Swaptions
are either payer swaptions, where the holder has the right (not the obligation) to
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pay at a fixed rate and receive at the floating rate.Or, receiver swaptions, where
the holder has the right ( not the obligation) to receive the fixed rate and pay the
floating interest rate.

Swaptions have many uses as financial instruments, a typical use is to offer
a guarantee to an organisation that the level of interest payments against loan
capital at a future date will not exceed a fixed level. To achieve this the
mechanism has to offer protection against uncertainty (risk) in the floating rate.

As an example suppose a company is planning to take out a 10 year floating
rate loan, in three months time. The company perceives a comparative advantage
in exchanging the floating rate for a 10 year fixed rate, that should not execeed
some level say, 7%. A swaption giving the right to a 3 month LIBOR at a fixed
rate of 7% for the loan term would be an attractive option. If the fixed to float
exchange rate in three months time exceeds 7%, the option would be exercise, if
the exchange rate is less, the option would expire and the company would enter
a regular swap at the more advantageous rate.The advantage of a swaption over
other instruments for forward rate guarantees is that the holder has no obligation
to exercise.

European swap options can be valued using the Black (1976) model with
adjustments. Referring to our analysis of the equivalent Martingale measures.If
we take an annuity as the numeraire, the swap at time 7' with payments at times

N—1
T\, T,,...T,, (giving an annuity A(t) = > (7, —T,)*M,(¢, T)) is the forward

m=0

swap rate (r,)*A(f). We are therefore in an environment which is forward risk
neutral with respect to the zero coupon bond price. The forward interest rate is
equal to the expected forward rate. The value is therefore the present value of
the annuity times the ratio of swap price to the annuity value.

Thus the swaption value is:

VA[E,(rp)N(d,) — r.N(d,)]

If V is the notional value and m is the number of payments per annum and n
the number of years in the option life. The swaption value will be:

V" M, (0. T) [rgN(dy) — r.N(d)] (11.4.1)

i=1

Given that an annuity pays 1/m*3 M,(0,T;) and M,(0,T,) = (e”'") The
i=1

swaption values are:
VA[r; N(dy) =, N(d,)] (11.4.2)

for a payer swaption.

VA[ry N(—d,) —r; N(—d,)] (11.4.3)
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for receiver swaption. Where:

g - In(r;/ry) +(a?/2)T
1— O'ﬁ

2
dzzln(rf/rxa)_;/i—f(a /2T =d1—0'ﬁ

For computational efficiency the leading value 1/m*3° M,(0,T;) can be
i=1

rewritten as:

e 7 (11.4.4)

Equation [11.4.2 can now be rewritten for a payer swaption as:

1-—F—
(14—=)mn

e [ry N(dy) —rx N(dy)] (11.4.5)

" .

f

For a receiver swaption the value is given by:
1-—+
T
r—m e [r.N(—dy) — r;N(—d,)] (11.4.6)
f

Equation [[T.4.3] provides the benchmark model for swaptions.

Example 11.1

Consider a five year swap, which starts in three years time and ends in eight
years (5 year swaption) that gives the holder a right to pay 7%. The forward
swap volatility is 21%, the risk free rate is 6.2% and the forward swap rate is
6.5%. The principal sum is $100.0. The value of this payer swaption is:

11(0.065/0.07) + (0.212/2)*3.0
0.21v3.0

d,—oNT =—0.0218 —0.21/3.0 = —0.3856

g In(r,/r)+(0?/2)T
1= T =
g In(ry/r,)—(0?/2)T
2= T =

d
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N(d,) =0.491
N(d,) = 0.349
—
(1 Ly
rfm e’ [rfN(dl) — rxN(dz)]

=4.2111%¢ %39 [0,065%0.491 — 0.70%0.349] = 0.02601

The up front value of the swaption is therefore 2.6% of the notional value, which
gives $2.60.

11.4.1. Adjusting Rates for Convexity

The relationship between bond prices and yield have been examined in an earlier
chapter where we looked at duration. The Macaulay duration was seen as a
reasonable method to account for the non-linear characteristic of the price/yield
relationship. A more rigorous approach is now examined, where the assumption
that the expected value of a rate is assumed to be exactly its forward rate is
challenged.

If we consider a derivative that has its future payoff determined by the zero
coupon bond yield at a future time. We have assumed that the future payoff is
given by S, — X,, where X gives us a final value of 0. In looking at interest
rate products, we have used the assumption that the forward interest rate is the
forward rate determined by the zero bond rate. The bond yield at some future
time is dependent on the futures bond price. We know that the bond price/yield
characteristic is non linear, so we should accommodate the non-linearity by
adjusting the forward interest rates in a non linear way.

When using the zero coupon bond as the numeraire a method which more
correctly relates the expected bond yield when the forward bond price is equal
to the expected bond price. It can be shown that:

r,, G" ()

E =Yy — =Y0, T 11.4.7
f(yt) Yo 2y00-y G,(yo) ( )
Where y, is the forward bond yield and the expected yield is y, — % ySUfT((’;,((i(‘)’)) ,
thus the convexity adjustment is '
1 G//
2 VeT ,(y") (11.4.8)
2777 G ()

Where G’ and G" are the first and second partial derivatives with respect to G,
which is the function relating bond value to forward yield.
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If p is the fixed swap value (or bond value) and y the forward yield:

»*p

1 9y
20
ay

Y (e” T —1) (11.4.9)

Example 11.2

A derivative has a single payment in four years time. The payoff is based on
the yield of a three year swap with forward yield of 6.57% and volatility of
20%.What is the adjusted rate?

The fixed side value is given as:

r r 147
- ’
(1+rf) (1‘1"’_;”) (1+”f)

p

The first partial derivative:

r 2r 3r 0.0657 2*0.0657
plorp=——-_— L T -
P72 (L) (47 (140.0657)2  (1+0.0657)3
300657 e
(1+0.0657)*

The second partial derivative:

L, 2 6r, 12r, 2+0.0657 60.0657
O p/or'y = 5T iy 5 5T 4
A+ (A+rm)t  (+r)°  (1+0.0657)° ' (1+0.0657)
12*0.0657

1200057 4445
T 40.0657)

The convexity adjustment is given by:

1 9.717
2 —-2.645

£0.0657% ("4 — 1) = 0.001375

For an adjustment of 0.001375 added to the initial forward yield of 0.0657 gives
an adjusted yield of 0.0670. The initial forward yield of 6.57% is now 6.7%.

11.4.2. Zero Coupon Bond as the Asset

Convexity is also a factor in interest rate derivatives that use the forward interest
rate of the zero coupon bond. Consider an instrument which pays cash flows at
time T, (for time 7) where this is between times 7, and 7,. Effectively paying
in advance. The cash flow will be V*r;*7, where 7 =T, — T;,. The yield is r;
for the compounding period 7.



11.4. Swap Options 267

Example 11.3

An instrument has a payoff in four years time based on the one year zero coupon
bond with a face value of $500.0. The flat yield is 10% with a volatility of
21.5%

1
C(14.10)4

dp/dr; = —0.909
&p/or,> =1.652

p

The convexity adjustment is:

?p
13y? 5 por
re+ —Ewy (" —=1) | =0.1040.001846 = 0.1018
ay
The bond price unadjusted value is:

1

= m =0.683"500.0"1 = $34.1506

p

The adjusted price is now:
’p
0.683*500.01* | r; + _1o® 2(e"zT —1) | =$34.78
dy

There is a difference of around $0.63 between the unadjusted and convexity
adjusted price.

11.4.3. Valuation of Bond Options

A typical bond option is the option to buy or sell a bond at a given date
for a particular price. If we can assume the bond price follows a lognormal
characteristic then the formulae for Black’s 76 model apply.

The call price is:

c=M,0,T)[FN(d,) — XN(d,)] (11.4.10)
The put price is:

p=M,(0,T)[XN(—d,) — FN(—d,)] (11.4.11)
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Where F is the forward price of the bond at the option expiration and variables
d,, d, are given by:

g In(F/X)+ (a%/2)T
1 — U\/T ’
dy=d,—oT.

This basic model is only suitable for short term bond pricing as the volatility

(uncertainty) of a bond at time zero is zero and then increases as time to

maturity increases. At maturity volatility is once again zero. The concave nature

of volatility is however not taken into account with this model. The Black model

assumes a linear rise in volatility with maturity, so pricing with this basic model

should remain under the quasi-linear rising portion of the concave characteristic.
For a coupon bond the price can be approximated by :

By—1

F=m (11.4.12)

Where B, is the bond price at time zero and [ is the present value of all coupon
payments during the option life.

When pricing the bond option choosing the base price as either dirty or clean
should be consistent for the strike price. The prices used in 11.3.14 and 11.3.15
assume cash prices rather than quoted prices. If we use quoted prices the formulae
should be adjusted accordingly and the strike price have accrued interest added
(see Chapter @] and accrual conventions).

Example 11.4

A European put option has 6 months to expiry with a strike price of £187.0 on a
bond with a forward price of £188.0 at expiration. The forward volatility is 5%,
the risk free rate is 5.65%. Give the option value.

log(188.0/187.0) 4 (0.052/2)*0.5
d, =
0.05v/0.5
d, =0.1685—+/0.5 = 0.1331
N(—d,) = N(—0.1685) = 0.483
N(—d,) = N(—0.1331) = 0.447

=0.1685

put = e 00505 #[188.00.447 — 187.0*0.433] = 2.11
The put value of the option is £2.11.

Example 11.5

A European 9 months call option on a 10 year bond with a face value of $1,000.0
has a strike price of $1,000.0. The current cash price for the bond is $985.0. The
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9 month risk free rate is 10% and the forward volatility is 8.5%. The bond pays
a semi annual rate of 10%. Coupon’s are payable in 2 and 8 months time. The 2
month risk free rate is 9.2% and the 8§ month rate is 9.55. Give the option value.
Also derive the put option price.

The discounted coupon payments are:

I = 50*6—041666*04092 +50*e—0.75*0.95 =96.17

The forward bond price is given by 11.3.16
By~ 985.0-96.17
M, (0, T) 20107075

10g(958.0/1000.0) + (0.0852/2)*0.75
= =—0.545
0.085+0.75
d,=d, — T = —0.545—0.085+/0.75 = —0.6189

=958.0

d,

The call value is given by:

¢=M,(0,T)[FN(d,) — XN(d,)] = ¢~*'"*7*[958.0*0.292 — 1000.0*0.267]
=11.602

Thus, the price of this call option is $11.60. The cost of a put option would be:

p=M,(0,T)[XN(—d,) — FN(—d,)] = ¢ "'"*7[1000.0*0.732 — 958.0*0.707]
=50.51

Therefore a put option will cost $50.51.

11.5. Short Rate Modelling

Short rate modelling is based on the notion of an interest rate (r) taken over an
infinitely short time span. So called equilibrium models are built around a process
model of the short rate. The process model is examined in relation to products
such as bonds and options that are dependent on a risk neutral environment.
There are a multitude of factors which can effect the eventual trajectory of
interest rates in the real world. For a risk neutral environment however we ignore
extraneous factors and view the process in terms of the constraints offered by
risk neutrality.

The simplest process approach is to examine equilibrium in terms of a single
factor such as the uncertainty that we can measure in a process for r. A single
factor equilibrium model therefore looks at a single reference such as Brownian
motion to explain the rate process.



270 11. Interest Rate Derivatives

The usual model for a risk neutral process that describes the short rate
behaviour is the Ito process:

dr =m(r)dt+ o(r)dz

There are three familiar models based on the Ito process, which offer a single
factor term structure model, these are reviewed below:

11.5.1. Rendleman and Bartter

The basic terms in this model are;
m(r) = ur, o(r) = or

The model assumes that the short rate is lognormal and follows a geometric
Brownian motion described by

dr = prdt+ ordz (11.5.1)

where w is the constant drift of the instantaneous change in rate and o is the
instantaneous variance of the change in rate. The process is, in this view, the
same as that for a change in stock price. The interest rate does not in practice
tend to follow the same observed pattern as a stock price. Interest rates exhibit
‘mean reversion’. When interest rates rise the tendency is for the short rate to pull
the rate towards a more negative value and towards a reversion (overall mean
level). When rates fall the opposite reversion tends the short rate towards a more
positive level. Models which cannot account for mean reversion are therefore
considered less robust than those which do account for the phenomenon.

The Rendleman and Bartter model, is usually implemented as a binomial tree.
The parameters used are:

u = e’V for the up movement and

d = e~"VA for the down movement

And probability of an up movement p =

To implement this model see Chapter [

A g
u—d

11.5.2. The Vasicek Model

The ? model is one which addresses the issue of mean reversion. The model is a
yield based one which assumes that interest rates are normal. The fundamental
process is:

m(r)y=a(@—r),o(r)=0

The Vasicek, risk neutral process is described by:

dr=a(0—r)dt+odz (11.5.2)
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where a, 0, o are all constants. The short rate is pulled to a mean reversion level
0 at a rate a.

If we consider the money market account as numeraire, the expected value of
a derivative, paying f; at time T is given by:

E[eT0f,]

where r, is the average interest rate over the period T —t. If we consider the
expectation in terms of the price of a zero coupon bond over the same time
periods;

M, (t,T)=E[e " f] (11.5.3)

The Vasicek model provides an equivalent as:
—B(t,T)r
M,(t,T) = A(t, T)e 5010 (11.5.4)

where r(¢) is the value of r at time ¢. Also,

1— efu(Tft)
B(t,T)= ——— (11.5.5)
a

A(LT)=e [(B(” ) -T+0(@6-0%/2) 0B, T)2:|

= 1 (11.5.6)
Considering again the price of a zero coupon bond being represented by the
expectation of the derivative (TT.43)).

Take R(¢, T) as the continuously compounded rate over the same time, then
for the same time periods, M, (¢, T) = e ®-DT=) Which can be rewritten:
R(t,T)= ﬁ In M, (¢, T). Thus the term structure for interest rates can be derived
from r and its risk free process which can be described by:

1
—t

R(1,T)=— - InE[e«""] (11.5.7)

In Vasicek’s model if we put
a=0,B(t,T)=T—1t,A(t, T) =e(a*(T —1)*/6

we have:

R, T)=

T nAG, T)+TL_tB(t, T)r(t) (11.5.8)

The entire term structure can therefore be fully described once suitable values
for a, 0, o and r are chosen.
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For pricing zero coupon European bonds the Vasicek model can be used with
the following equations:

¢ = P(t, )N(h) — XP(t, T)N(h — ap) (11.5.9)
p=XP(t, T)N(—h+op) — P(t, )N(—h) (11.5.10)
1 P(t, 1) ap

2(]1 — ¢—2a(T-1)
op = B(T, 7),/‘7(;—61) (115.12)

11.5.3. Cox Ingersoll Ross (C.I.R) Model

The fundamental process is:
m(r)=a(@—r),o(r)=o/r
The risk neutral process from their model is:
dr =a(0—r)dt+odz (11.5.13)

The behaviour of the CIR one factor model is very similar to the Vasicek model
and the forming equations are similar.

— —B(1,T)
M, (t,T) = A(t, T)e """

However both B(z, T) and A(t, T) are derived with different characteristics. The
variable vy is also not a direct dependence on r(¢).
The values are derived as:

2(eXT-0 1)

B(1,T) = T @™ 112y (11.5.14)

2

2yelatN(IT-0/2 2adfe
At T)= [(Wa)(ewt) — 1)+2J (11.5.15)
y=va*+20? (11.5.16)

See Cox, Ingersoll and Ross (1985).

11.6. Arbitrage Free Models

The equilibrium models do not fit current term structures for interest rates. The
fit from these models can be made reasonably accurate with the correct fitting of
the characteristic from choosing appropriate forming parameters. The drift in an
equilibrium model is not usually dependent on time (although see the CIR model).
A no arbitrage model is designed to be consistent with the current rate term
structure; the input to the model is the current term structure, whereas the output
from an equilibrium model is the estimated current term structure. Equilibrium
models can have a time dependency added to convert them to no-arbitrage.
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11.6.1. The Ho and Lee Model

The Ho and Lee (1986) model is a yield based no arbitrage one. The model
assumes a normally distributed short term rate. The short rate drift is time
dependent and is therefore arbitrage free with respect to its input (prices). The
original Ho and Lee model was based on a binomial tree of bond prices. The
two input parameters were short rate standard deviation and the market price of
risk for the short rate. The basic model is not adjusted for mean reversion.

The forming equation is:

dr = 6(t)dt+ odz (11.6.1)

where 6(t) is time dependent drift and o ( standard deviation of the short rate)
is a constant. The instantaneous short rate standard deviation refelects the choice
of 6, which is selected on the basis of it being a fit of the initial structure. 6 can
be computed by:

0(1) = F,(0,1) + 0ot (11.6.2)

where F(0, t) is the instantaneous forward rate at maturity ¢. Zero coupon bonds
and European options can be computed analytically using the Ho and Lee model.
The price at time ¢ of a discount bond maturing at time 7T is given as:

P(t,T) = A(t, T)e "W

and
P, T) dlnP0O,7r) 1 , )
InA(t,T)=1In T—t)———=——0c°t(T—t
1) <P(O,t))+( L ;7 (T =1)
The term, 31%[(0") can be replaced with a term for the instantaneous forward rate

with maturity ¢ viewed at point 0. From 15.1.77 this is, F(0, ¢). The bond price
is then expressed by:

P(0,T)
P(0,1)

InA(¢,T) =1In < ) +(T —1)F(0, 1) — %a'zt(T —1)? (11.6.3)

The Ho-Lee formulae for European zero coupon option prices are:
¢ = P(t, )N(h) — X(¢t, T)N(h — op) (11.6.4)
p=XP(t, T)N(h— op) — P(t, T)N(h) (11.6.5)
where
op=o(T— T)VT —1.

1 P(t, 1) op
h=—In|———|+—
ap P(t, T)X 2
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11.6.2. Hull and White Model

The Hull and White (1990) model is similar to the Ho and Lee model with the
addition of mean reversion. The model extends the Vasicek model by:

Extending dr = a(0 — r)dt+ odz, to; dr=a [@ — r] dt+ odz.
The basic term 6(f) can be computed from:

(1) = F,(0, 1)+ aF(0, 1)+ (2"_:(1 _ o)

The bond price at time T is given by:

P(t, T) = A(t, T)e -1 (11.6.6)
where,
1— —a(T—t)
B(t,T)= —¢ (11.6.7)
a
PO, T ap(0, ¢ t, T)?
mae. 1) =1 | 20D g )00 v D) (11.6.8)
P(0, 1) at 2
and

1
V(I, T)Z — ﬁO_Z(e—aT _ e—at)Z(eZat _ 1)

The partial derivative can be replaced with a term for the instantaneous forward
rate:

P(0,T)
P(0, 1)

InA(z, T) =In |: } +B(t, T)F(0, 1) — ﬁaz(e*” — e (2 — 1)

(11.6.9)
A European option on a zero coupon bond maturing at time 7 is given by:

¢ =P(0, ")N(h) — XP(O, T)N((h—v(T, 7)) (11.6.10)
p=XP(O, T)N(—h+v(T, 7)) — P(0, T)N(—h) (11.6.11)

where

1 I P(0, 7) v(T, 7)
= WT, 7 n|:P(0, T)X:| T

The Vasicek, Ho-Lee and Hull-White models can be computed by a general
purpose set of methods that require minimal modifications to implement an
individual model.
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If we take an initial time as 0, then the following formulae will provide the

basis of a general purpose set of algorithms.
For a call option at time O that matures in time T:

¢ = SP(0, T)N(h) — XP(0, T)N(h — op)

where S is the bond face value and:

1 SP0O,T, op

h=—Inoim  OP
"xpo,7) " 2

~op
The put price is given as:
XP(0, T)N(—h+op)—SP(0, T, )N(—h)
For the Ho and Lee model:
op=0o(T, —T)WT
and for the Vasicek/Hull-White models:

1 _ 672aT

mp= 7 1o 1o

a

Example 11.6

(11.6.12)

(11.6.13)

(11.6.14)

A European call option with three years to expiry has strike price of $100.0 and
volatility of 4%. The mean reverting level is 9.5% and the mean reverting rate
is 5.5%. The bond has a face value of $110.0 and a four year maturity. The risk

free rate is 8.5%.

1 — ¢-0.055(3-0)
B(.T)=B(0.2)= —5 27655
(+,T)=B(0.2) 0.055
1 — —0055(4-3)
B(T.7)=B(3.4)=—% 09729
(T,7) = B(3,4) 0.055
| — ¢=0.055(4-0)
B(t,7) =B(0,4) = — — —3.9505
0.055

(B(0, 3) — 34 0)(0.055% *0.095 — 0.0352/2)

A(t, T) = A(0,3) = exp |: 0.0552

0.0352B(0, 3)?

=0.9842
4+0.055 }

(B(0, 4) —3+0)(0.0552 *0.095 — 0.0352/2)

A(t,7) = A(0,4) =exp |: 0.0552

0.0352B(0, 4)?

=0.9759
4+0.055
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P(t, T) = P(0,3) = A(0, 3)e 0370085 — 7780

P(t,7) = P(0,4) = A(0, 4)e PO70%5 = 0.7192

o 1 — g-2aT
=B(t, )= [l—e @ D] —— =
op=B(t,7) - [1—e 14/ >
[o2(1 — e=2a(T=1)) \/0_0352(1 — ¢ 2'0.055(3-0))
B(3,4),| ——— = =0.9729" =0.06221
G 2a 2+0.055

_ 1, sPO.T,) op_ 1 110°P(04)  0.06221
T op XPO,T) 2 006221 100*P(0,3) 2

=0.2996

¢ = (F*P(0,4)N(h) — X*P(0,3)N(h— op)) =2.672.
The call option price is $2.67.

Listing [T.1] gives the class Vasiceckop which implements the Vasiceck
algorithm. The code which runs Example 11.10 is appended.

package FinApps;

import static java.lang.Math.*;
import BaseStats.Probnorm;
public class Vasicekop {

public Vasicekop(double meanrev,double revlevel,
double volatility, double starttime) {
a=meanrev;
theta=revlevel;
sigma=volatility;
start=starttime;
}
private double a;
private double theta;
private double sigma;
private double start;
private double pstart;
private double pmat;
private double h;
private double hw;
private double bondvol;
private double bondvolw;
private double btstart;
private double bmaturity;
double bexpiry;
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private void vasiParams (double f, double x, double rate,
double time,double tmaturity ) {

btstart=((1l.0-exp(-a*(time-start)))/a);
bexpiry=((l.0-exp(-a*(tmaturity-time)))/a);
bmaturity=((1l.0-exp(-a*(tmaturity-start)))/a);
double startatl=((btstart-time+start)*(((a*a)*theta)
-((sigma*sigma)*0.5))/(a*a));
double startat2=(((sigma*sigma)* (btstart*btstart))/(4*a));
double starta=exp(startatl-startat2);
double matatl=((bmaturity-tmaturity+start)*(((a*a)*theta)
-((sigma*sigma)*0.5))/(a*a));
double matat2=(((sigma*sigma)* (bmaturity*bmaturity))/(4*a));
double mata=exp(matatl-matat2);
pstart=(starta*exp(-btstart*rate));
pmat=(mata*exp(-bmaturity*rate));
bondvol=(bexpiry* (sqgrt((sigma*sigma)
*(l.0-exp(-2*a*(time-start)))/(2*a))));
h=((1.0/bondvol)*log((pmat*f)/(pstart*x))+(bondvol*0.5));
}
public double vasiCall(double f, double x, double rate,
double time,double tmaturity ) {
Probnorm p=new Probnorm() ;
vasiParams(f,x,rate,time,tmaturity);
return ((f*pmat*p.ncDisfnc(h))
- (x*pstart*p.ncDisfnc(h-bondvol)));
}
public double vasiPut (double f, double x, double rate,
double time,double tmaturity ) {
Probnorm p=new Probnorm() ;
vasiParams(f,x,rate,time,tmaturity);
return ((x*pstart*p.ncDisfnc(-h+bondvol))
- (f*pmat*p.ncDisfnc(-h)));
}

public static void main(String[] args) {

Vasicekop v= new Vasicekop(0.055,0.095,0.04,0.0);
double returnvalue=v.vasiCall(110.0,100.0,0.085,3.0,4.0);
System.out.println(" CALL =="+returnvalue);

}

LisTING 11.1. Implementation of class to compute Vasiceck algorithm
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12

Conditional Options

Conditional options are variations on standard (‘plain vanilla’) options, where
the ultimate payoff is derived from a model condition imposed on the underlying
or the value of another asset class. Conditional options can be considered as the
basic subset of exotic options. Exotic options are a class of derivative that have
been developed to meet the needs of particular trading environments. Standard
put and call options (and some exotic types) are traded on major exchanges
with prices and volatilities being quoted, to reflect demand and risk. In the more
sophisticated OTC market many derivatives are specifically designed to address
a very particular set of circumstances, these exotic products range from being
reasonably simple options based on the well understood Black-Scholes process
to complex options, which assume a different economy to the Black-Scholes
one. In this chapter and those which follow we will only be considering the
case of products that have assets which follow Geometric Brownian motion and
subsequently the option generally follows a Black-Scholes type process.

This and subsequent chapter’s largely follows the sequence of option taxonomy
as originally described by Rubinstein & Reiner in their series of papers from
1991 to 1992. The papers are referenced where appropriate. This taxonomy and
further extensions provided by the excellent guide from Haug (1998) largely
influence the sequence of discussion and presentation.

12.1. Executive Stock Options

Executive stock options are a vehicle used to attract and retain key individuals
in an organisation. Typically stock options are offered to an employee, where
the options can be exercised only at some future date. The rationale is to tie in
the employee with a call option to gain in some future time. If the employee
leaves within a specified timeframe (the so-called vesting period), the option
is cancelled. After the vesting period the option can be exercised at any time
within its available maturity time. If the employee leaves the organisation after
the vesting period, the option is immediately exercised, if it is in-the-money.
Options that are out-of-the-money are forfeit. Executive options are also widely
used to ‘incentivise’ manager’s to achieve a high shareholder worth to an organ-
isation. Options can be tied to the stock price performance and paid when a

279
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given performance barrier is exceeded. Options used in this way are part of
compensation packages and have to be valued according to regulatory guidelines.

An executive stock option cannot be resold, but needs to be exercised so that
the executive is required to sell the underlying company stock. The valuation of
an executive stock option can therefore be based on a model of the behaviour
for an early exercise decision.

The executive option suggested by [lennergren and Naslund (1993) takes into
account the behaviour of the employee in leaving within the vesting period
as a probability measure ( the annual‘jump rate’). The jump rate probability
measure is used to modify a standard Black-Scholes formula for valuing this
executive option.

The basic formula used is:

c=e (S "N(d,) — Xe " N(d,)) (12.1.1)

P=e"" (Xe"N(—d,) — Se" " N(—d,)) (12.1.2)

Where A is the annual jump rate and ;

_ In(S/X)+(b=0?/2)T
= i
dy=d,— T

d,

Example 12.0

A three year to maturity executive stock option is to be issued when the stock
price is £50.0, the strike price is £60.0 and the underlying asset volatility is
30%.The stock pays an annual dividend of 3% and the risk-free rate is 5%. If
the annual jump rate is 12% what is the value?

$=50.0,X=60.0,T=3.0,r=0.05,4g=0.03, 0 =0.30, A =0.12.
Using:

_ log(S/X) 4 (b+0?/2)T

- —

_ 10g(50.0/60.0) + (0.02 +0.30%/2)*3.0
B 0.30*v/3.0

d,

=0.0243

d,=d, — ovT =0.0243 —0.30"+/3.0 = —0.495
N(d,) = N(0.02430) = 0.509, N(d,) = N(—0.4950) = 0.310
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e*)\T — e*OA12*3AO — 06976
c=e (Se(b_’)TN(dl) — Xe_’TN(dz))
C = 0.6976* [50.0*e<°-°2*°<°5>*3'°*0.509 — 6O.O*e’°'°5*3'°*0.310] —5.0737

The value is £5.07.
The value given above is the same as

M Cpg = 0.6976*7.272 = 5.0737.

The term in brackets of [2.1.1] is the standard Black-Scholes call formula. The
code for implementing executive stock options is shown in Listing [2.]

package FinApps;

import static java.lang.Math.*;
import BaseStats.Probnorm;
import java.text.*;
public class Execoption {

public Execoption(double jrate) {
jump=jrate;

}

private double jump;

private double callprice;

private double callpricefm;

private double putprice;

public double getExcall() {
return callprice;

}

public double getExcallfm() {
return callpricefm;

}

public double getExput () {
return putprice;

}

private void setCall(double call) {
callprice=call;

}

private void setCallfm(double call) {
callpricefm=call;

}

private void setPut(double put) {
putprice=put;

}

public void execOpt (double s, double x, double volatility,
double time, double rate, double yield) {
//Jennergren & Naslund (1993)
Blackscholecp b=new Blackscholecp(yield);
b.bscholEprice(s,x,volatility,time,rate);
setCall((exp(-jump*time)*(b.getCalle())));
setPut( (exp(-jump*time)*(b.getPute())));
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public void execOptfm(double s1, double s2, double r,
double sigl,double sig2,double time) {
// after Fischer- Margrabe (1978) for index
//-linked compensation
Probnorm p = new Probnorm( ) ;
double sigs=((sigl*sigl)-2.0*jump*sigl*sig2+(sig2*sig2));
double sigma=sqrt(sigs);
double dl1=((log(sl/s2)+(sigs*time))/(sigma*sqgrt(time)));
double d2=(dl-sigma*sqgrt(time));
double n=p.ncDisfnc(dl);
double n2=p.ncDisfnc(d2);
double c=(sl*n-s2*n2);
setCallfm(c);
}

public static void main(String[] args) {
Execoption e=new Execoption(0.12);
e.execOpt(50.0,60.0,0.30,3.0,0.05,0.03);
System.out.println("ANS=="+e.getExcall());

}

LisTING 12.1. Executive Stock Option

12.1.1. Forward Start Option

An executive stock option can also be represented as a forward start option since
there is commitment to granting an at-the-money option at some future time.

A forward start option will be at-the-money or out/in-the-money at a given time
in the future. If we consider a forward start European call option, which is at-
the-money and has maturity 7" and starts at 7. If the asset price at ¢ is denoted as
S, and at time zero is S, the value of the option will be proportional to the asset
price S,/S,, times the call price at time zero ( for an option with maturity (7 — ¢)).

Rubinstein (1990) has developed a formula based on the above, where the
strike price is represented by a constant («) times the asset price ratio. If the
option is at -the-money (as for an executive option) the constant is set to unity,
if the option is in-the-money, the constant is set less than unity and for out-of-
the-moneys, it is set at greater than unity.

The forward start option formulae are:

c =8 (" NTIN(d,) — ae " "I N(d,)) (12.1.3)
P =5Se""" (ae” " IN(—d,) — " " "IN(—d))) (12.1.4)
where
g In(1/a)+ (b+02/2)(T —1)
b oT —t
and

dy=d,—o~vT—t
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Example 12.1

What is the value of a call option with a forward start in four months time
assuming the option starts at-the-money and has a maturity of one year, the stock
price is $50.0, the risk free rate is 6% and the continuous dividend yield is 3%,
with an expected volatility of 25% ?

$=50,T=1.0,r=0.06,b=0.06—0.03=0.03,0 =0.25, 0 = 1.0

_In(l/a)+ (b4 /2)(T —1)

- ovT—t

In(1/1)+ (0.03+0.25%/2)(1 —0.333)
a 0.25v/1-0.333

d,

=0.20
dy=d, —ovT —1=0.5792—0.25"v/1—0.333 = —0.004

N(d,) = N(0.20) = 0.4207

N(d,) = N(—0.004) = 0.5016

c= Se(h—r)t (e(b—r)(T—t)N(dl) _ ae—r(T—t)N(dz)) —
c= 506(0‘03_0‘06)0‘333 (e(OAOS—OAOG)(lA0—0.333)N(d ) —1 08—0,06(1A0—0.333)N(d2))
= 1 .

=4.4057

The call option is worth $4.40.

package FinApps;

import BaseStats.Probnorm;
import static java.lang.Math.*;
public class Forstartop {

public Forstartop(double carryrate) {
crate=carryrate;

}

public double getCalle() {
return callprice;

}

public double getPute() {
return putprice;

}

private void setcalle(double call) {
callprice=call;

}

private void setpute(double put) {
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putprice=put;
¥
private double crate=0.0;
private double brate=0.0;
private double d1=0.0;
private double d2=0.0;
private double callprice=0.0;
private double putprice=0.0;

private void dvalues (double sprice,double alpha,double volatility,
double time, double tmaturity,double rate) {
brate=crate<0.0?0.0: (brate=cratel!=rate?(rate-crate):rate);
dl=((log(l.0/alpha)+(brate+(volatility*volatility)*0.5)*
(tmaturity-time))
/(volatility*sqrt(tmaturity-time)));
d2=(dl-(volatility*sqgrt(tmaturity-time)));
}

public void fstartOp(double sprice,double alpha,double volatility,
double time,double tmaturity, double rate) {

Probnorm p=new Probnorm() ;

dvalues(sprice,alpha,volatility,time,tmaturity,rate);

double probd1=0.0;

double probd2=0.0;

double probdnl=0.0;

double probdn2=0.0;

probdl=p.ncDisfnc(dl);

probd2=p.ncDisfnc(d2);

probdnl=p.ncDisfnc(-dl);

probdn2=p.ncDisfnc(-d2);

setcalle(sprice*exp( (brate-rate)*time)*
((exp((brate-rate)* (tmaturity-time))*probdl)
-(alpha*exp(-rate* (tmaturity-time))*probd2)));

setpute(sprice*exp((brate-rate)*time)*
((alpha*exp((-rate)*(tmaturity-time) )*probdn2)
-(exp((brate-rate)*(tmaturity-time))*probdnl)));

}

LisTING 12.2. Forward start option

12.1.2. Indexed Stock Options

An indexed stock option is an executive ‘compensation’ device, where the
package is related not to the nominal fixed value strike price of the underlying
company stock; rather it is tied to the performance of the organisation’s share
value in relation to the exchange index. In this way the company’s performance is

measured against the index as a whole. iel (2000) suggest
a valuation methodology based on the Fischer-Margrabe formulae for pricing
calls on index bonds [1974d) and the pricing of an option to exchange one
option for another ). (The latter option is covered in a following

section.) The model does not take account of stock paying any dividends.



12.1. Executive Stock Options 285

The indexed stock option model has applicability to both executive compen-
sation schemes and for a more rigorous compliance with standards accounting
practices for company reporting. Using a standard Black-Scholes pricing method,
executive indexed options are shown to be consistently overvalued, resulting in
accounting anomalies with financial reporting when the options are exercised.
The overvaluation of indexed options when using a standard Black-Scholes
method is very susceptible to an accelerating rate of increase with time to
maturity.

From a shareholder’s perspective the advantage of tying executive compen-
sation to an index is that the option only pays when the company’s stock
outperforms the rest of the index. From the executive perspective, a payout is still
possible if a bear market, reduces the index value, but the company performance
is still ahead of a falling market.

The valuation formula is given by a call:

C(S, X, T) = SN(d,) — XN(d,) (12.1.5)

where: 4= log(S/X)+ o*T

= e (12.1.6)

dy=d,—oT (12.1.7)

0% =05 —2psy Oy Og+ 0y (12.1.8)

N(.) is the standard normal density function.

S The current market price of company stock

X The current value of the indexed-exercise price: given by the ‘fair’
determination of exercise price =a % of the index value.

T The number of years to maturity of the stock option.

oy The instantaneous standard deviation of the underlying index; solved from
an iterative procedure on the Black-Scholes call option valuation of the
index.

o The instantaneous standard deviation of the company common stock; solved
from an iterative procedure on the Black-Scholes call option valuation of
the stock.

o The instantaneous proportional standard deviation of the change in stock to
exercise price.

p Is the instantaneous correlation coefficient between stock and exercise price.

Listing 12.3 shows class Execoption, which provides two methods to compute
valuations.
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Exercise 12.2

An executive stock option is to be issued, based on the current stock price of
ABC company as a percentage of the XYZ 500 index. The current price of ABC
stock is $164.0 which is around 8% of the XYZ index. The XYZ is currently at
2,000.0. The strike is therefore 2,000/8 = $160.0. The risk-free rate (taken as the
current one year T-Bill yield) is 5%. The value on the day, of a Black-Scholes
standard call on the option stock implies an instantaneous volatility for the stock
to be 0.45. Similarly a call option on the XYZ implies a volatility of 0.20.
Based on historical daily price comparisons for the previous year, the correlation
between ABC and XYZ stock is found to be 0.90.

1. What is the standard Black Scholes value of this stock option?
2. What is the correct valuation?

The standard Black-Scholes valuation with:
§=164.0,X =160.0,r =0.05,04=045,T=1.0

is, $34.426.

The index-strike adjusted valuation is given as:
07 = 05 —2psx 0y 05+ 05 = 0.455 — 2°0.904,70.20,70.45¢ + 0.20; = 0.0805

_ 10g(8/X)+ 0T _ log(164.0/160.0) +0.0805*1.0

=0.3707
oNT 0.2837%/1.0

d,

d,=d, —o~/T =0.3707—0.2837*/1.0 = 0.0870

C(S, X, T) = SN(d,) — XN(d,) = 164.070.644 — 160.070.534 = 20.164

The ‘correct’ price is $20.164 showing that the Black-Scholes standard valuation
for an executive stock option is overvalued by around 70%.
The effect of time to maturity of the option is shown in Figure 211
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Time sensitivity for Index-linked V Fixed exercise price executive stock option values
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FIGURE 12.1. Simple chooser option value.

import static package FinApps;
java.lang.Math.*;

import BaseStats.Probnorm;
public class Execoption {

public Execoption(double jrate) {
jump=jrate;

}

private double jump;

private double callprice;

private double callpricefm;
private double putprice;

public double getExcall() {
return callprice;

}

public double getExcallfm() {
return callpricefm;

}

public double getExput() {

return putprice;

}

private void setCall(double call) {
callprice=call;

}

private void setCallfm(double call) {
callpricefm=call;

}

private void setPut(double put) {
putprice=put;

}

public void execOpt(double s, double x, double volatility, double time,
double rate, double yield) {//Jennergren & Naslund (1993)
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Blackscholecp b=new Blackscholecp(yield);
b.bscholEprice(s,x,volatility,time,rate);

setCall( (exp(-jump*time)*(b.getCalle())));
setPut ((exp(-jump*time)* (b.getPute())));
}

public void execOptfm(double s1, double s2,
double r, double sigl,double sig2,double time) {// after
Fischer-//Margrabe (1978) for index -linked compensation

Probnorm p = new Probnorm( ) ;

double sigs=((sigl*sigl)-2.0*jump*sigl*sig2+(sig2*sig2));

double sigma=sqrt(sigs);

double dl1=((log(sl/s2)+(sigs*time))/(sigma*sqgrt(time)));

double d2=(dl-sigma*sqgrt(time));

double n=p.ncDisfnc(dl);

double n2=p.ncDisfnc(d2);

double c=(sl*n-s2*n2);

setCallfm(c);

}

LisTING 12.3. Executive Option valuation

12.2.  Time Switch Option

A time switch option provides the investor with an amount proportional to the
time a stock price deviates from the strike price of the option. In a discrete call
time switch, the investor receives a payoff that reflects the time at maturity for
which the stock price has exceeded the strike price:

value = A*At, forS;y, > X
For a discrete time switch put option:
value = A*At, forS;,, < X

[Pechd (@) has developed a series of formulas to price discrete and continuous
time switch options for the discrete case.

c=Ae"Y'N

i=1

(ln(S/X) +(b—0?/2)iAt

At+(mAe T At 12.2.1
oViAt ) ( ) ( )

o —ln(S/X)—(b—02/2)iAt> _
P=AeT N( At+ (mAe ' TAt 12.2.2
; Y ( ) ( )
Where

n=T/At and (mAe~""At) is a term added to adjust for any period m of the
options prior lifetime.
Class Timeswop, provides time switch methods as shown in Listing 12.4.
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Example 12.3

Price a call time switch option that has one year to maturity. The accumulation
rate is 2 for each day of the year (365 day year) that the stock price is in excess
of the strike price which is $105.0. The initial stock price is $95.0, the volatility
of the stock is 30% per annum, the risk free rate is 7%. There is no prior period
for which the option has fulfilled its accumulation condition.

$=95.0,X=105.0,r=0.07,06 =0.30,T = 1.0, A =2,n = 365, At = 1/365.
" In(S/X b—0?/2)iA
c:AerTZN<n(/ )+ ( o’ /2)iAt
i=1 g~ iAt
" In(95.0/105.0 0.07 —0.30%/2)i*1/365
p 0.30,/i*1/365

=0.5683

)At+0.0

1/36540.0

where 3 N*At = 0.3048 is the value shown in the final row (for i = 365) of
Table [2T1

package FinApps;
import static java.lang.Math.*;
import BaseStats.Probnorm;

public class Timeswop {

public Timeswop(int mperiod,int dayterm,double yield) {
m=mperiod;
crate=yield;
daycount=dayterm;

} private int m;

private double qg;

private int daycount;
private double brate=0.0;
private double crate=0.0;

public double cTswitch(double s, double x,
double accumulate,double tmaturity,double rate,double volatility)
{
Probnorm p=new Probnorm() ;
brate=crate<0.0?0.0: (brate=crate!=rate?(rate-crate):rate);
double deltat=(1.0/daycount);
int n=(int) (tmaturity/deltat);
//discards fraction..rounds down to o
double d=0.0;
double sum=0.0;
double call=0.0;

double prevalue=(deltat*accumulate*exp(-rate*tmaturity)*m);
for(int i=1;i<n+1;i++)
{
d=((log(s/x)+(brate-((volatility*volatility)*0.5))*i*deltat)
/(volatility*sqrt(i*deltat)));
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sum+=(p.ncDisfnc(d)*deltat);
}

return (accumulate*exp(-rate*tmaturity)*sum+prevalue);

}
public double pTswitch(double s, double x,double accumulate,
double tmaturity, double rate,double volatility)

Probnorm p=new Probnorm() ;
brate=crate<0.0?0.0: (brate=crate!=rate?(rate-crate):rate);
double deltat=(1.0/daycount);
int n=(int) (tmaturity/deltat);

//discards fraction..rounds down to o

double d;
double sum=0.0;
double put=0.0;
double prevalue=(deltat*accumulate*exp(-rate*tmaturity)*m);
for(int i=1l;i<n+1l;i++)
{

d=((-log(s/x)-(brate-((volatility*volatility)*0.5))*i

*deltat)/(volatility*sqrt(i*deltat)));

sum+=(p.ncDisfnc(d)*deltat);

put=(accumulate*exp(-rate*tmaturity)*sum+prevalue);

}

return put;

}

LiSTING 12.4. Valuation of Time Switch options

12.3.  Chooser Option

A chooser option gives the holder a right to choose at some time after purchasing
an option to make it a call or put. For a standard chooser, the right can be
exercised after a pre-determined time to make the option a standard European put
or call with the same strike price and remaining time to maturity. Chooser options
tend to be more expensive than the equivalent standard call or put options, since
the inclusion of choice represents a form of premium.

The structure of a simple chooser option is similar to that of a straddle (recall
that this is a simultaneous position in a call and put).The chooser option exhibits
a higher price as time to choice increases and although the option is structured
as a straddle, its cost is somewhat less than a straddle.

Chooser options are generally accepted as first appearing in the OTC market
by Bankers Trust, the original options were American call or put derivatives.

The payoff from a standard chooser is given as:

max [c(S, X, T), p(S, X, T)]

where ¢(S,, X, T) is the plain vanilla call value and P(S, X, T) is the value of a
plain vanilla put option with time 7 being the time to option maturity and ¢ the
time at which choice is made.
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TABLE 12.1. The running values from Equation [Z2.Tlwith param-
eters as in Example [[2.3]

i i*At d N(d) SN*At

1 0.0027 —6.3693 0.000 0.000

2 0.0055 —4.5007 0.000 0.000

3 0.0082 —3.6723 0.0001 0.000

4 0.011 —3.1781 0.0007 0.000

5 0.0137 —2.8406 0.0023 0.000

6 0.0164 —2.5913 0.0048 0.000

7 0.0192 —2.3975 0.0083 0.000

8 0.0219 —2.2411 0.0125 0.0001
9 0.0247 —2.1115 0.0174 0.0001
10 0.0274 —2.0017 0.0227 0.0002
11 0.0301 —1.9073 0.0282 0.0003
12 0.0329 —1.8248 0.034 0.0004
13 0.0356 —1.752 0.0399 0.0005
14 0.0384 —1.6871 0.0458 0.0006
15 0.0411 —1.6288 0.0517 0.0007
16 0.0438 —1.576 0.0575 0.0009
17 0.0466 —1.5279 0.0633 0.0011
18 0.0493 —1.4838 0.0689 0.0013
19 0.0521 —1.4432 0.745 0.0015
20 0.0548 —1.4057 0.0799 0.0017
345 0.9452 —0.2621 0.3966 0.2829
346 0.9479 —0.2615 0.3968 0.284

347 0.9507 —0.2609 0.3971 0.2851
348 0.9534 —0.2603 0.3973 0.2862
349 0.